A Dynamic Circuit Model of a Small Direct Methanol Fuel Cell for Portable Electronic Devices

被引:24
作者
Guarnieri, Massimo [1 ]
Di Noto, Vito [2 ]
Moro, Federico [1 ]
机构
[1] Univ Padua, Dipartimento Ingn Elettr, I-35131 Padua, Italy
[2] Univ Padua, Dipartimento Sci Chim, I-35131 Padua, Italy
关键词
Battery; coupled problem; equivalent circuit; fuel cell; methanol; nonlinear; PERFORMANCE;
D O I
10.1109/TIE.2009.2027916
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Direct methanol fuel cells (DMFCs) constitute nowadays a promising alternative to lithium ion batteries for powering portable devices. The effective design of power-management units for interfacing DMFCs requires accurate models able to account for variable-load conditions and fuel consumption. A dynamic nonlinear circuit model for passive methanol fuel cells is presented in this paper. The model takes into account mass transport, current generation, electronic and protonic conduction, methanol adsorption, and electrochemical kinetics. Adsorption and oxidation rates, which mostly affect the cell dynamics, are modeled by a detailed two-step reaction mechanism. The fully coupled multiphysics equivalent circuit is solved by assembling first-order differential equations into a nonlinear state-variable system in order to simulate the electrical evolution of the fuel cell from its initial conditions. The fuel-cell discharge and methanol consumption are computed by combining mass-transport and conservation equations. As a result, the runtime of a DMFC can be predicted from the current load and the initial methanol concentration.
引用
收藏
页码:1865 / 1873
页数:9
相关论文
共 50 条
[41]   Response of a direct methanol fuel cell to fuel change [J].
Leo, T. J. ;
Raso, M. A. ;
Navarro, E. ;
Sanchez de la Blanca, E. ;
Villanueva, M. ;
Moreno, B. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (20) :11642-11648
[42]   A comprehensive yet comprehensible analytical model for the direct methanol fuel cell [J].
Rosenthal, Neal S. ;
Vilekar, Saurabh A. ;
Datta, Ravindra .
JOURNAL OF POWER SOURCES, 2012, 206 :129-143
[43]   Effect of the fuel electrode composition and structure on the performance of the direct methanol fuel cell [J].
V. G. Sister ;
V. N. Fateev ;
D. A. Bokach .
Russian Journal of Electrochemistry, 2007, 43 :1097-1100
[44]   Effect of the fuel electrode composition and structure on the performance of the direct methanol fuel cell [J].
Sister, V. G. ;
Fateev, V. N. ;
Bokach, D. A. .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2007, 43 (09) :1097-1100
[45]   An autonomous fuel cell: Methanol and dimethyl ether steam reforming direct fed to fuel cell [J].
Rodrigues, Caroline Teixeira ;
Lopes, Gabriela de Franca ;
Alonso, Christian Goncalves ;
Jorge, Luiz Mario de Matos ;
Paraiso, Paulo Roberto .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (10) :4052-4063
[46]   Modeling the transient temperature distribution in a direct methanol fuel cell [J].
Ramesh, Vaidhiswaran ;
Krishnamurthy, Balaji .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 809 :1-7
[47]   A Portable Direct Methanol Fuel Cell Power Station for Long-Term Internet of Things Applications [J].
Chou, Chung-Jen ;
Jiang, Shyh-Biau ;
Yeh, Tse-Liang ;
Tsai, Li-Duan ;
Kang, Ku-Yen ;
Liu, Ching-Jung .
ENERGIES, 2020, 13 (14)
[48]   Simple and functional direct methanol fuel cell stack designs for application in portable and auxiliary power units [J].
Barbera, O. ;
Stassi, A. ;
Sebastian, D. ;
Bonde, J. L. ;
Giacoppo, G. ;
D'Urso, C. ;
Baglio, V. ;
Arico, A. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (28) :12320-12329
[49]   Portable direct hydrogen fed PEM fuel cell model and experimental verification [J].
Ei-Sharkh, M. Y. ;
Sisworahardjo, N. S. ;
Yalcinoz, T. ;
Alam, M. S. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (07) :643-650
[50]   Determination of the efficiency of methanol oxidation in a direct methanol fuel cell [J].
Majidi, Pasha ;
Altarawneh, Rakan M. ;
Ryan, Nicholas D. W. ;
Pickup, Peter G. .
ELECTROCHIMICA ACTA, 2016, 199 :210-217