Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli

被引:44
作者
Han, MJ
Park, SJ
Park, TJ
Lee, SY
机构
[1] Korea Adv Inst Sci & Technol, Metab & Biomol Engn Natl Res Lab, Dept Chem & Biomol Engn, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Bioproc Engn Res Ctr, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Biosyst, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Bioinformat Res Ctr, Taejon 305701, South Korea
关键词
small heat shock protein; sHsps; chaperone; recombinant protein; proteolysis;
D O I
10.1002/bit.20227
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Proteome profiling of the inclusion body (IB) fraction of recombinant proteins produced in Escherichia coli suggested that two small heat shock proteins, IbpA and lbpB, are the major proteins associated with IBs. In this study, we demonstrate that IbpA and IbpB facilitate the production of recombinant proteins in E. coli and play important roles in protecting recombinant proteins from degradation by cytoplasmic proteases. We examined the cytosolic production, and Tat- or Sec-dependent secretion of the enhanced green fluorescent protein (EGFP) in wild type, ibpAB(-) mutant, and ibpAB-amplified E. coli strains. Analysis of fluorescence histograms and confocal microscopic imaging revealed that over-expression of the ibpA and/or ibpB genes enhanced cytosolic EGFP production whereas knocking out the ibpAB genes enhanced secretory production. This strategy seems to be generally applicable as it was successfully employed for the enhanced cytosolic or secretory production of several other recombinant proteins in E. coli. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:426 / 436
页数:11
相关论文
共 50 条
[31]   Small heat shock proteins: big folding machines [J].
Morrow, Genevieve ;
Hightower, Lawrence E. ;
Tanguay, Robert M. .
CELL STRESS & CHAPERONES, 2015, 20 (02) :207-212
[32]   Small heat shock proteins: big folding machines [J].
Geneviève Morrow ;
Lawrence E. Hightower ;
Robert M. Tanguay .
Cell Stress and Chaperones, 2015, 20 :207-212
[33]   Conditional Disorder in Small Heat-shock Proteins [J].
Alderson, T. Reid ;
Ying, Jinfa ;
Bax, Ad ;
Benesch, Justin L. P. ;
Baldwin, Andrew J. .
JOURNAL OF MOLECULAR BIOLOGY, 2020, 432 (09) :3033-3049
[34]   Inhibition of α-synuclein aggregation by small heat shock proteins [J].
Bruinsma, Ilona B. ;
Bruggink, Kim A. ;
Kinast, Karsten ;
Versleijen, Alexandra A. M. ;
Segers-Nolten, Ine M. J. ;
Subramaniam, Vinod ;
Kuiperij, H. Bea ;
Boelens, Wilbert ;
de Waal, Robert M. W. ;
Verbeek, Marcel M. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (10) :2956-2967
[35]   Microbial small heat shock proteins and their use in biotechnology [J].
Han, Mee-Jung ;
Yun, Hongseok ;
Lee, Sang Yup .
BIOTECHNOLOGY ADVANCES, 2008, 26 (06) :591-609
[36]   Small heat shock proteins and stress tolerance in plants [J].
Sun, WN ;
Van Montagu, M ;
Verbruggen, N .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2002, 1577 (01) :1-9
[37]   The small heat shock proteins and their role in human disease [J].
Sun, Y ;
MacRae, TH .
FEBS JOURNAL, 2005, 272 (11) :2613-2627
[38]   Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity [J].
Zhang, Zi-Xu ;
Nong, Fang-Tong ;
Wang, Yu-Zhou ;
Yan, Chun-Xiao ;
Gu, Yang ;
Song, Ping ;
Sun, Xiao-Man .
MICROBIAL CELL FACTORIES, 2022, 21 (01)
[39]   Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins [J].
Fu, Xinmiao ;
Chang, Zengyi ;
Shi, Xiaodong ;
Bu, Dongbo ;
Wang, Chao .
PROTEIN SCIENCE, 2014, 23 (02) :229-237
[40]   Enhanced recombinant insulin production in transgenic Escherichia coli that heterologously expresses carrot heat shock protein 70 [J].
Jang, Bomin ;
Ahn, Yeh-Jin .
BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2019, 20