Remote Sensing Image Registration Using Equivariance Features

被引:0
作者
Lee, Woo-Ju [1 ]
Oh, Seoung-Jun [1 ]
机构
[1] Kwangwoon Univ, Dept Elect Engn, Seoul, South Korea
来源
35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021) | 2021年
关键词
Image registration; remote sensing; deep neural network; feature matching; equivariance feature;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a deep learning-based framework for remote sensing image registration using equivariance features. Unlike conventional methods, the networks in the framework are trained on not invariance features but equivariance features since keeping invariancy in the areas of registration of remote sensing images can reduce the accuracy of matching results. Our framework is tested on four sets of KOMPSAT-3 remote sensing images and compared with the conventional machine learning based and the invariant feature based deep learning methods. The experimental results show that the proposed approach outperforms all the comparing methods.
引用
收藏
页码:776 / 781
页数:6
相关论文
共 19 条
  • [1] [Anonymous], 2019, KOMPSAT 3 IMAGE DATA
  • [2] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [3] SURF: Speeded up robust features
    Bay, Herbert
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 404 - 417
  • [4] Cohen T.S., P INT C MACH LEARN J, P2990
  • [5] Dalal N., CVPR, P886, DOI [10.1109/CVPR.2005.177, DOI 10.1109/CVPR.2005.177]
  • [6] Measures for an Objective Evaluation of the Geometric Correction Process Quality
    Goncalves, Hernani
    Goncalves, Jose A.
    Corte-Real, Luis
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) : 292 - 296
  • [7] Han XF, 2015, PROC CVPR IEEE, P3279, DOI 10.1109/CVPR.2015.7298948
  • [8] Robust multispectral image registration using mutual-information models
    Kern, Jeffrey P.
    Pattichis, Marios S.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (05): : 1494 - 1505
  • [9] Le Moigne J, 2017, INT GEOSCI REMOTE SE, P2565, DOI 10.1109/IGARSS.2017.8127519
  • [10] A PATIENT-TO-COMPUTED-TOMOGRAPHY IMAGE REGISTRATION METHOD BASED ON DIGITALLY RECONSTRUCTED RADIOGRAPHS
    LEMIEUX, L
    JAGOE, R
    FISH, DR
    KITCHEN, ND
    THOMAS, DGT
    [J]. MEDICAL PHYSICS, 1994, 21 (11) : 1749 - 1760