The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp residue for renewable bio-oils

被引:276
作者
Pan, Pan [1 ]
Hu, Changwei [1 ]
Yang, Wenyan [1 ]
Li, Yuesong [1 ]
Dong, Linlin [1 ]
Zhu, Liangfang [1 ]
Tong, Dongmei [1 ]
Qing, Renwei [2 ]
Fan, Yong [2 ]
机构
[1] Sichuan Univ, Coll Chem, Minist Educ, Key Lab Green Chem & Technol, Chengdu 610064, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Life Sci, Chengdu 610064, Sichuan, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Pyrolysis; Bio-oils; Microalgae; Nannochloropsis sp; HZSM-5; catalyst; CHLORELLA-PROTOTHECOIDES; BIODIESEL PRODUCTION; BIOMASS; MICROALGAE; FUEL; CULTIVATION; CONVERSION; WASTES; STRAW;
D O I
10.1016/j.biortech.2010.01.070
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Nannochloropsis sp. (a kind of green microalga) residue was pyrolyzed without catalyst or with different amount of HZSM-5 catalyst in a fixed bed reactor in nitrogen flow. The effects of pyrolysis parameters such as temperature and catalyst-to-material ratio on product yields were studied. The bio-oils obtained were analyzed by elemental. GC-MS and FTIR analysis. The results indicated that the bio-oils from catalytic pyrolysis of Nannochloropsis sp. residue (BOCP) had lower oxygen content (19.5 wt.%) and higher heating-value (32.7 MJ kg(-1)) than those obtained from direct pyrolysis (BODP) which had an oxygen content of 30.1 wt.% and heating-value of 24.6 MJ kg(-1). The BODP mainly consisted of long carbon chain compounds with various terminal groups (LCTG), while the BOCP mainly consisted of aromatic hydrocarbons. These properties of bio-oils demonstrated that the Nannochloropsis sp. residue can be used as a renewable energy resource and chemical feedstock. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4593 / 4599
页数:7
相关论文
共 33 条
[1]   PRODUCTION OF HYDROCARBONS BY CATALYTIC UPGRADING OF A FAST PYROLYSIS BIO-OIL .1. CONVERSION OVER VARIOUS CATALYSTS [J].
ADJAYE, JD ;
BAKHSHI, NN .
FUEL PROCESSING TECHNOLOGY, 1995, 45 (03) :161-183
[2]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306
[3]   Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration [J].
Chiu, Sheng-Yi ;
Kao, Chien-Ya ;
Tsai, Ming-Ta ;
Ong, Seow-Chin ;
Chen, Chiun-Hsun ;
Lin, Chih-Sheng .
BIORESOURCE TECHNOLOGY, 2009, 100 (02) :833-838
[4]   Overview of applications of biomass fast pyrolysis oil [J].
Czernik, S ;
Bridgwater, AV .
ENERGY & FUELS, 2004, 18 (02) :590-598
[5]   The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse) [J].
Demiral, Ilknur ;
Sensoz, Sevgi .
BIORESOURCE TECHNOLOGY, 2008, 99 (17) :8002-8007
[6]   Prediction of heating values of biomass fuel from elemental composition [J].
Friedl, A ;
Padouvas, E ;
Rotter, H ;
Varmuza, K .
ANALYTICA CHIMICA ACTA, 2005, 544 (1-2) :191-198
[7]   Production and characterization of pyrolysis liquids from sunflower-pressed bagasse [J].
Gercel, HF .
BIORESOURCE TECHNOLOGY, 2002, 85 (02) :113-117
[8]   Microalgae as a raw material for biofuels production [J].
Gouveia, Luisa ;
Oliveira, Ana Cristina .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2009, 36 (02) :269-274
[9]   Bio-fuels from thermochemical conversion of renewable resources: A review [J].
Goyal, H. B. ;
Seal, Diptendu ;
Saxena, R. C. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (02) :504-517
[10]  
Guillard R.R.L., 1975, CULTURE MARINE INVER, P29, DOI [10.1007/978-1-4615-8714-9_3, DOI 10.1007/978-1-4615-8714-9_3, 10.1007/978-1-4615-8714-93]