Polynomial identity testing for depth 3 circuits

被引:60
作者
Kayal, Neeraj
Saxena, Nitin
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
关键词
identity testing; depth of circuits; Chinese remaindering; rings;
D O I
10.1007/s00037-007-0226-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the identity testing problem for depth 3 arithmetic circuits (Sigma Pi Sigma circuit). We give the first deterministic polynomial time identity test for Sigma Pi Sigma circuits with bounded top fanin. We also show that the rank of a minimal and simple Sigma Pi Sigma circuit with bounded top fanin, computing zero, can be unbounded. These results answer the open questions posed by Klivans-Spielman (STOC 2001) and Dvir-Shpilka (STOC 2005).
引用
收藏
页码:115 / 138
页数:24
相关论文
共 20 条
[1]   Crosstalk and microlens study in a color CMOS image sensor [J].
Agranov, G ;
Berezin, V ;
Tsai, RH .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (01) :4-11
[2]   PRIMES is in P [J].
Agrawal, M ;
Kayal, N ;
Saxena, N .
ANNALS OF MATHEMATICS, 2004, 160 (02) :781-793
[3]   Reducing randomness via irrational numbers [J].
Chen, ZZ ;
Kao, MY .
SIAM JOURNAL ON COMPUTING, 2000, 29 (04) :1247-1256
[4]  
Dvir Zeev, 2005, P 37 ANN ACM S THEOR, P592
[5]   Exponential lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields [J].
Grigoriev, D ;
Razborov, A .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2000, 10 (06) :465-487
[6]  
Grigoriev D., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P577, DOI 10.1145/276698.276872
[7]   SOME EXACT COMPLEXITY RESULTS FOR STRAIGHT-LINE COMPUTATIONS OVER SEMIRINGS [J].
JERRUM, M ;
SNIR, M .
JOURNAL OF THE ACM, 1982, 29 (03) :874-897
[8]   Derandomizing polynomial identity tests means proving circuit lower bounds [J].
Kabanets, V ;
Impagliazzo, R .
COMPUTATIONAL COMPLEXITY, 2004, 13 (1-2) :1-46
[9]  
KLIVANS ADAM, 2001, P 33 ANN ACM S THEOR, P216
[10]  
Lewin D., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P438, DOI 10.1145/276698.276856