Using states with a large photon number variance to increase quantum Fisher information in single-mode phase estimation

被引:9
作者
Lee, Changhyoup [1 ]
Oh, Changhun [2 ]
Jeong, Hyunseok [2 ]
Rockstuhl, Carsten [1 ,3 ]
Lee, Su-Yong [4 ]
机构
[1] Karlsruhe Inst Technol, Inst Theoret Solid State Phys, D-76131 Karlsruhe, Germany
[2] Seoul Natl Univ, Ctr Macroscop Quantum Control, Dept Phys & Astron, Seoul 08826, South Korea
[3] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[4] Agcy Def Dev, Quantum Phys Technol Directorate, Daejeon, South Korea
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2019年 / 3卷 / 11期
基金
新加坡国家研究基金会;
关键词
quantum metrology; quantum Fisher information; phase estimation; LIKELIHOOD; LIMITS;
D O I
10.1088/2399-6528/ab524a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When estimating the phase of a single mode, the quantum Fisher information for a pure probe state is proportional to the photon number variance of the probe state. In this work, we point out particular states that offer photon number distributions exhibiting a large variance, which would help to improve the local estimation precision. These theoretical examples are expected to stimulate the community to put more attention to those states that we found, and to work towards their experimental realization and usage in quantum metrology.
引用
收藏
页数:8
相关论文
共 88 条
[1]   Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states [J].
Adesso, G. ;
Dell'Anno, F. ;
De Siena, S. ;
Illuminati, F. ;
Souza, L. A. M. .
PHYSICAL REVIEW A, 2009, 79 (04)
[2]   Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit [J].
Anisimov, Petr M. ;
Raterman, Gretchen M. ;
Chiruvelli, Aravind ;
Plick, William N. ;
Huver, Sean D. ;
Lee, Hwang ;
Dowling, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[3]   Machine learning method for state preparation and gate synthesis on photonic quantum computers [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. ;
Izaac, Josh ;
Myers, Casey R. ;
Bradler, Kamil ;
Killoran, Nathan .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02)
[4]   Phase estimation for thermal Gaussian states [J].
Aspachs, M. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. .
PHYSICAL REVIEW A, 2009, 79 (03)
[5]   Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates [J].
Berry, Dominic W. ;
Hall, Michael J. W. ;
Zwierz, Marcin ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2012, 86 (05)
[6]   A better bound on the variance [J].
Bhatia, R ;
Davis, C .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (04) :353-357
[7]   Quantum-optical state engineering up to the two-photon level [J].
Bimbard, Erwan ;
Jain, Nitin ;
MacRae, Andrew ;
Lvovsky, A. I. .
NATURE PHOTONICS, 2010, 4 (04) :243-247
[8]   Generalized limits for single-parameter quantum estimation [J].
Boixo, Sergio ;
Flammia, Steven T. ;
Caves, Carlton M. ;
Geremia, J. M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[9]   Quantum metrology: Dynamics versus entanglement [J].
Boixo, Sergio ;
Datta, Animesh ;
Davis, Matthew J. ;
Flammia, Steven T. ;
Shaji, Anil ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[10]   Optimal frequency measurements with maximally correlated states [J].
Bollinger, JJ ;
Itano, WM ;
Wineland, DJ ;
Heinzen, DJ .
PHYSICAL REVIEW A, 1996, 54 (06) :R4649-R4652