Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties

被引:220
作者
Sari, Ahmet [1 ]
Alkan, Cemil [1 ]
Bilgin, Cahit [1 ]
机构
[1] Gaziosmanpasa Univ, Dept Chem, TR-60240 Tokat, Turkey
关键词
Micro/nano PCM; Paraffin; Eutectic mixture; Emulsion polymerization; PMMA; Latent heat thermal energy storage; PHASE-CHANGE MATERIALS; MICROENCAPSULATED N-OCTADECANE; CHANGE MATERIALS PCMS; COMPLEX COACERVATION; BUILDING-MATERIALS; FABRICATION; MICROCAPSULES; FORM; NANOCAPSULES; PERFORMANCE;
D O I
10.1016/j.apenergy.2014.09.047
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work is aimed to prepare, characterize and determine the latent heat thermal energy storage properties of micro/nano encapsulated paraffin eutectic mixtures (PEMs) with polymethylmethacrylate (PMMA) shell. The eutectic combination ratios and optimum melting temperatures of C17-C24, C19-C18,C19-C24 and C20-C24 mixtures were find out prior to the encapsulation processes. Four kinds of micro/nano capsules, PMMA/(C17-C24), PMMA/(C19-C18), PMMA/(C19-C24) and PMMA/ (C20-C24), were synthesized effectively as novel encapsulated phase change materials (PCMs) via emulsion polymerization. The Fourier transform infrared (FTIR) spectroscopy analysis confirmed the polymerization reaction to be occurred around the PEM used as core material. The polarized optical microscopy (POM), scanning electron microscopy (SEM) and particle size distribution (PSD) analysis showed that the fabricated PMMA/PEM micro/nano capsules had spherical shape-appearances with micro/nano sizes. The differential scanning calorimetry (DSC) measurements revealed that the micro/nano capsules containing the highest PEM content had melting temperature range of about 20-36 degrees C and latent heat storage capacities of about 86-169J/g. Thermogravimetry analysis (TGA) results verified that the encapsulated PEMs had good thermal reliability and chemical stability after repeated melting/freezing cycles for 5000 times. Furthermore, the synthesized PMMA/PEM micro/nano capsules had conceivable thermal conductivity values and reversible phase change behaviors. (C) 2014 ElsevierLtd. All rights reserved.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 80 条
[1]  
Abdulkarim S M., 2007, ASEAN Food Journal, V14, P25
[2]   Steady-state thermal comfort properties of fabrics incorporated with microencapsulated phase change materials [J].
Alay, Sennur ;
Alkan, Cemil ;
Gode, Fethiye .
JOURNAL OF THE TEXTILE INSTITUTE, 2012, 103 (07) :757-765
[3]   Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics [J].
Alay, Sennur ;
Alkan, Cemil ;
Gode, Fethiye .
THERMOCHIMICA ACTA, 2011, 518 (1-2) :1-8
[4]   Synthesis and Thermal Properties of Poly(n-butyl acrylate)/n-Hexadecane Microcapsules Using Different Cross-Linkers and Their Application to Textile Fabrics [J].
Alay, Sennur ;
Gode, Fethiye ;
Alkan, Cemil .
JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 120 (05) :2821-2829
[5]   Preparation and Characterization of Poly(methylmethacrylate-co-glycidyl methacrylate)/n-hexadecane Nanocapsules as a Fiber Additive for Thermal Energy Storage [J].
Alay, Sennur ;
Gode, Fethiye ;
Alkan, Cemil .
FIBERS AND POLYMERS, 2010, 11 (08) :1089-1093
[6]   Development of a model for compensating the influence of temperature gradients within the sample on DSC-results on phase change materials [J].
Albright, Greg ;
Farid, Mohammed ;
Al-Hallaj, Said .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 101 (03) :1155-1160
[7]   Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage [J].
Alkan, Cemil ;
Sari, Ahmet ;
Karaipekli, Ali .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) :687-692
[8]   Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage [J].
Alkan, Cemil ;
Sari, Ahmet ;
Karaipekli, Ali ;
Uzun, Orhan .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (01) :143-147
[9]   Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season [J].
Ascione, Fabrizio ;
Bianco, Nicola ;
De Masi, Rosa Francesca ;
de' Rossi, Filippo ;
Vanoli, Giuseppe Peter .
APPLIED ENERGY, 2014, 113 :990-1007
[10]   Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale [J].
Barreneche, Camila ;
Elena Navarro, M. ;
Ines Fernandez, A. ;
Cabeza, Luisa F. .
APPLIED ENERGY, 2013, 109 :428-432