Structure of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase inhibitor complexes provide insight into the conformational changes required for substrate binding and catalysis

被引:50
作者
Lee, JE
Cornell, KA
Riscoe, MK
Howell, PL
机构
[1] Hosp Sick Children, Res Inst, Toronto, ON M5G 1X8, Canada
[2] Univ Toronto, Fac Med, Dept Biochem, Toronto, ON M5S 1A8, Canada
[3] Portland State Univ, Dept Chem, Portland, OR 97207 USA
[4] Med Res Serv, Vet Affairs Med Ctr, Portland, OR 97021 USA
[5] Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, Portland, OR 97201 USA
关键词
D O I
10.1074/jbc.M210836200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
5'-Methylthioadenosine/S- adenosylhomocysteine (MTA/AdoHcy) nucleosidase is a key enzyme in a number of critical biological processes in many microbes. This nucleosidase catalyzes the irreversible hydrolysis of the N-9-C-1' bond of MTA or AdoHcy to form adenine and the corresponding thioribose. The key role of the MTA/AdoHcy nucleosidase in biological methylation, polyamine biosynthesis, methionine recycling, and bacterial quorum sensing has made it an important antimicrobial drug target. The crystal structures of Escherichia coli MTA/AdoHcy nucleosidase complexed with the transition state analog, formycin A (FMA), and the nonhydrolyzable substrate analog, 5'-methylthiotubercidin (MTT) have been solved to 2.2- and 2.0-Angstrom resolution, respectively. These are the first MTA/AdoHcy nucleosidase structures to be solved in the presence of inhibitors. These structures clearly identify the residues involved in substrate binding and catalysis in the active site. Comparisons of the inhibitor complexes to the adenine-bound MTA/AdoHcy nucleosidase (Lee, J. E., Cornell, K. A., Riscoe, M. K., and Howell, P. L. (2001) Structure (Camb.) 9, 941-953) structure provide evidence for a ligand-induced conformational change in the active site and the substrate preference of the enzyme. The enzymatic mechanism has been re-examined.
引用
收藏
页码:8761 / 8770
页数:10
相关论文
共 37 条
[1]   On the catalytic mechanism of adenosylhomocysteine methylthioadenosine nucleosidase from E-coli. [J].
Allart, B ;
Guillerm, D ;
Guillerm, G .
NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS, 1999, 18 (4-5) :861-862
[2]   The catalytic mechanism of adenosylhomocysteine/methylthioadenosine nucleosidase from Escherichia coli -: Chemical evidence for a transition state with a substantial oxocarbenium character [J].
Allart, B ;
Gatel, M ;
Guillerm, D ;
Guillerm, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 256 (01) :155-162
[3]   The structure of human 5′-deoxy-5′-methylthioadenosine phosphorylase at 1.7 Å resolution provides insights into substrate binding and catalysis [J].
Appleby, TC ;
Erion, MD ;
Ealick, SE .
STRUCTURE, 1999, 7 (06) :629-641
[4]   How bacteria talk to each other: regulation of gene expression by quorum sensing [J].
Bassler, BL .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (06) :582-587
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   S-ADENOSYL-L-METHIONINE-DEPENDENT MACROMOLECULE METHYLTRANSFERASES - POTENTIAL TARGETS FOR THE DESIGN OF CHEMOTHERAPEUTIC-AGENTS [J].
BORCHARDT, RT .
JOURNAL OF MEDICINAL CHEMISTRY, 1980, 23 (04) :347-357
[7]  
BORCHARDT RT, 1986, BIOL METHYLATION DRU, P227
[8]   SLOW-COOLING PROTOCOLS FOR CRYSTALLOGRAPHIC REFINEMENT BY SIMULATED ANNEALING [J].
BRUNGER, AT ;
KRUKOWSKI, A ;
ERICKSON, JW .
ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 :585-593
[9]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[10]   Structural identification of a bacterial quorum-sensing signal containing boron [J].
Chen, X ;
Schauder, S ;
Potier, N ;
Van Dorsselaer, A ;
Pelczer, I ;
Bassler, BL ;
Hughson, FM .
NATURE, 2002, 415 (6871) :545-549