Influence of integrated microstructure on the performance of LiNi0.8Co0.15Al0.05O2 as a cathodic material for lithium ion batteries

被引:31
|
作者
Chen, Yongjie [1 ,2 ]
Li, Ping [2 ]
Zhao, Sijia [1 ]
Zhuang, Yan [1 ,2 ]
Zhao, Shiyong [3 ]
Zhou, Qun [1 ]
Zheng, Junwei [1 ,2 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
[2] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou 215006, Peoples R China
[3] Zhangjiagang Guotai Huarong New Chem Mat Co Ltd, Zhangjiagang, Peoples R China
来源
RSC ADVANCES | 2017年 / 7卷 / 46期
关键词
CONTINUOUS COPRECIPITATION METHOD; ELECTROCHEMICAL PROPERTIES; CYCLING PERFORMANCE; COATING METHOD; SURFACE; ELECTRODE; LINI0.80CO0.15AL0.05O2; MICROSPHERES; IMPROVEMENT; MECHANISMS;
D O I
10.1039/c7ra04206j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Microstructures of active materials may definitively determine the performance of lithium ion batteries. Herein, we develop a facile approach to synthesize porous LiNi0.8Co0.15Al0.05O2 (NCA) with uniform Al distribution by a two-step solid reaction with assistance of spray drying. Relative to the randomly aggregated counterpart, the NCA microspheres with an integrated framework and porous structure result in not only a profitable accessibility of the electrolyte, but also a favorable interfacial behavior. The porous NCA spheres exhibit a superior electrochemical performance with a discharge capacity of 202.1 mA h g(-1) at 0.1C and 151 mA h g(-1) at 2C, and capacity retention of 74.5% after 500 cycles at 2C. These are ascribed to the integrated network accumulating the stress generated during cycling to maintain the structural stability of the spheres. As a result, less solid electrolyte interphase (SEI) film is formed at the interface of the resulting electrode, consequently leading to a lower resistance of charge transfer, and better rate capability and cycling performance, compared to those of the electrode with the aggregated counterpart. Thereby, a purposeful engineering of the microstructures of the NCA materials would be important to achieve an optimal electrochemical performance of the electrode material.
引用
收藏
页码:29233 / 29239
页数:7
相关论文
共 50 条
  • [1] Preparation and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 as Cathode Material for Lithium Ion Batteries
    Jiang Shifang
    Meng Huanju
    Zhang Yudong
    Liu Shuang
    Tao Zhanliang
    Chen Jun
    RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (02) : 678 - 682
  • [2] Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries
    Zhu, Lei
    Liu, Yang
    Wu, Wenyi
    Wu, Xiongwei
    Tang, Weiping
    Wu, Yuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (29) : 15156 - 15162
  • [3] Preparation and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 as Cathode Material for Lithium Ion Batteries
    Jiang, Shifang
    Meng, Huanju
    Zhang, Yudong
    Liu, Shuang
    Tao, Zhanliang
    Chen, Jun
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2019, 48 (02): : 678 - 682
  • [4] LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries
    Loghavi, Mohammad Mohsen
    Mohammadi-Manesh, Hossein
    Eqra, Rahim
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (08) : 2569 - 2578
  • [5] LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries
    Mohammad Mohsen Loghavi
    Hossein Mohammadi-Manesh
    Rahim Eqra
    Journal of Solid State Electrochemistry, 2019, 23 : 2569 - 2578
  • [6] A LiNi0.8Co0.15Al0.05O2/Ge electrochemical system for lithium-ion batteries
    Kulova, Tatiana L.
    Gavrilin, Ilya M.
    Kudryashova, Yulia O.
    Skundin, Alexander M.
    MENDELEEV COMMUNICATIONS, 2020, 30 (06) : 775 - 776
  • [7] Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries
    Kleiner, Karin
    Dixon, Ditty
    Jakes, Peter
    Melke, Julia
    Yavuz, Murat
    Roth, Christina
    Nikolowski, Kristian
    Liebau, Verena
    Ehrenberg, Helmut
    JOURNAL OF POWER SOURCES, 2015, 273 : 70 - 82
  • [8] Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries
    Hai Yen Tran
    Greco, Giorgia
    Taeubert, Corina
    Wohlfahrt-Mehrens, Margret
    Haselrieder, Wolfgang
    Kwade, Arno
    JOURNAL OF POWER SOURCES, 2012, 210 : 276 - 285
  • [9] Template-assisted synthesis of LiNi0.8Co0.15Al0.05O2 hollow nanospheres as cathode material for lithium ion batteries
    Xiaoyu Wu
    Junjie Lu
    Yue Han
    Huayu Wu
    Lingli Bu
    Ju Xie
    Chen Qian
    Haibo Li
    Guowang Diao
    Ming Chen
    Journal of Materials Science, 2020, 55 : 9493 - 9503
  • [10] Towards superior cyclability of LiNi0.8Co0.15Al0.05O2 cathode material for lithium ion batteries via yttrium modification
    Liu, Shuaiwei
    Li, Yunjiao
    Wang, Shilei
    Chen, Yongxiang
    Tan, Zhouliang
    Yang, Jiachao
    Deng, Shiyi
    He, Zhenjiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 874