Finite-dimensional Banach spaces with numerical index zero

被引:13
作者
Martín, M [1 ]
Merí, J [1 ]
Rodríguez-Palacios, A [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
numerical range; numerical radius; numerical index;
D O I
10.1512/iumj.2004.53.2447
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a finite-dimensional Banach space X has numerical index 0 if and only if it is the direct sum of a real space X-0 and nonzero complex spaces X-1,..., X-n in such a way that the equality parallel toX(0) + e(iq1p)X(1) + . . . + e(iqnp)Xnparallel to = parallel toX(0) + . . . + Xnparallel to holds for suitable positive integers q(1),. . . , q(n), and every p is an element of R and every x(j) is an element of X-j (j = 0, 1, . . . , n). If the dimension of X is two, then the above result gives X = C, whereas dim(X) = 3 implies that X is an absolute sum of R and C. We also give an example showing that, in general, the number of complex spaces cannot be reduced to one.
引用
收藏
页码:1279 / 1289
页数:11
相关论文
共 21 条
[1]  
Bauer F.L.:., 1962, Numer. Math, V4, P103
[2]   GEOMETRICAL PROPERTIES OF THE UNIT SPHERE OF BANACH ALGEBRAS [J].
BOHNENBLUST, HF ;
KARLIN, S .
ANNALS OF MATHEMATICS, 1955, 62 (02) :217-229
[3]  
Bonsall F. F., 1973, London Math. Soc. Lecture Note Ser., V10
[4]  
BONSALL F. F., 1971, London Math. Soc. Lecture Note Series, V2
[5]  
DUNCAN J, 1970, J LONDON MATH SOC, V2, P481
[6]  
El Amin K, 2001, ROCKY MT J MATH, V31, P197
[7]   Numerical index and renorming [J].
Finet, C ;
Martín, M ;
Payá, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :871-877
[8]  
Fonf VP, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P599, DOI 10.1016/S1874-5849(01)80017-6
[10]  
Hardy G. H., 2008, INTRO THEORY NUMBERS, Vsixth