Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

被引:131
作者
Gade, Dinakar [1 ]
Hackebeil, Gabriel [3 ]
Ryan, Sarah M. [4 ]
Watson, Jean-Paul [2 ]
Wets, Roger J. -B. [5 ]
Woodruff, David L. [5 ]
机构
[1] Sabre Holdings, Southlake, TX 76092 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] Texas A&M Univ, College Stn, TX 77843 USA
[4] Iowa State Univ, Ames, IA 50011 USA
[5] Univ Calif Davis, Davis, CA 95616 USA
基金
美国能源部;
关键词
Stochastic mixed-integer programming; Decomposition algorithms; Lower bounding; DUAL DECOMPOSITION; UNIT COMMITMENT; INTERDICTION; MODEL;
D O I
10.1007/s10107-016-1000-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. We report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.
引用
收藏
页码:47 / 67
页数:21
相关论文
共 42 条
[1]   A finite branch-and-bound algorithm for two-stage stochastic integer programs [J].
Ahmed, S ;
Tawarmalani, M ;
Sahinidis, NV .
MATHEMATICAL PROGRAMMING, 2004, 100 (02) :355-377
[2]  
[Anonymous], 2007, Pac. J. Optim., DOI DOI 10.18452/2928
[3]  
[Anonymous], 1996, Die Grundlehren der mathematischen Wissenschaften
[4]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[5]   Dual decomposition in stochastic integer programming [J].
Caroe, CC ;
Schultz, R .
OPERATIONS RESEARCH LETTERS, 1999, 24 (1-2) :37-45
[6]   A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem [J].
Carrion, Miguel ;
Arroyo, Jose M. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (03) :1371-1378
[7]   Toward scalable stochastic unit commitment Part 2: solver configuration and performance assessment [J].
Cheung, Kwok ;
Gade, Dinakar ;
Silva-Monroy, Cesar ;
Ryan, Sarah M. ;
Watson, Jean-Paul ;
Wets, Roger J. -B. ;
Woodruff, David L. .
ENERGY SYSTEMS-OPTIMIZATION MODELING SIMULATION AND ECONOMIC ASPECTS, 2015, 6 (03) :417-438
[8]   Stochastic network interdiction [J].
Cormican, KJ ;
Morton, DP ;
Wood, RK .
OPERATIONS RESEARCH, 1998, 46 (02) :184-197
[9]   Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design [J].
Crainic, Teodor Gabriel ;
Hewitt, Mike ;
Rei, Walter .
COMPUTERS & OPERATIONS RESEARCH, 2014, 43 :90-99
[10]   DECOMPOSITION PRINCIPLE FOR LINEAR-PROGRAMS [J].
DANTZIG, GB ;
WOLFE, P .
OPERATIONS RESEARCH, 1960, 8 (01) :101-111