Machine learning in cardiovascular medicine: are we there yet?

被引:286
作者
Shameer, Khader [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Johnson, Kipp W. [3 ,4 ,5 ,6 ]
Glicksberg, Benjamin S. [3 ,4 ,5 ,6 ,8 ]
Dudley, Joel T. [3 ,4 ,5 ,6 ]
Sengupta, Partho P. [9 ]
机构
[1] Northwell Hlth, Dept Med Informat, Great Neck, NY USA
[2] Northwell Hlth, Dept Res Informat, Great Neck, NY USA
[3] Mt Sinai Hlth Syst, Inst Next Generat Healthcare, New York, NY USA
[4] Mt Sinai Hlth Syst, Icahn Inst Genom & Multiscale Biol, New York, NY USA
[5] Mt Sinai Hlth Syst, Dept Genet & Genom Sci, New York, NY USA
[6] Mt Sinai Hlth Syst, Icahn Sch Med Mt Sinai, New York, NY USA
[7] Northwell Hlth, Ctr Res Informat & Innovat, New Hyde Pk, NY USA
[8] Univ Calif San Francisco, Inst Computat Hlth Sci, San Francisco, CA 94143 USA
[9] West Virginia Heart & Vasc Inst, Div Cardiol, Morgantown, WV USA
基金
美国国家卫生研究院;
关键词
heart disease; PROTEIN-SEQUENCE; PREDICTION; CLASSIFICATION; CHALLENGES; DISEASE;
D O I
10.1136/heartjnl-2017-311198
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine.
引用
收藏
页码:1156 / 1164
页数:9
相关论文
共 48 条
[1]   Cardiovascular risk analysis by means of pulse morphology and clustering methodologies [J].
Almeida, Vania G. ;
Borba, J. ;
Pereira, H. Catarina ;
Pereira, Tania ;
Correia, Carlos ;
Pego, Mariano ;
Cardoso, Joao .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 117 (02) :257-266
[2]   Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning [J].
Alonso-Betanzos, Amparo ;
Bolon-Canedo, Veronica ;
Heyndrickx, Guy R. ;
Kerkhof, Peter L. M. .
CLINICAL MEDICINE INSIGHTS-CARDIOLOGY, 2015, 9 :57-71
[3]  
[Anonymous], 2015, 2015 19 INT C SYST T
[4]  
[Anonymous], 2006, 2006 IEEE INT JOINT
[5]  
[Anonymous], 2016, 2016 COMP CARD C CIN
[6]   SCIENCE AND STATISTICS [J].
BOX, GEP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (356) :791-799
[7]   Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations [J].
Chen, Jonathan H. ;
Asch, Steven M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (26) :2507-2509
[8]   Prediction models for cardiovascular disease risk in the general population: systematic review [J].
Damen, Johanna A. A. G. ;
Hooft, Lotty ;
Schuit, Ewoud ;
Debray, Thomas P. A. ;
Collins, Gary S. ;
Tzoulaki, Ioanna ;
Lassale, Camille M. ;
Siontis, George C. M. ;
Chiocchia, Virginia ;
Roberts, Corran ;
Schlussel, Michael Maia ;
Gerry, Stephen ;
Black, James A. ;
Heus, Pauline ;
van der Schouw, Yvonne T. ;
Peelen, Linda M. ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2016, 353
[9]   Large-scale association analysis identifies new risk loci for coronary artery disease [J].
Deloukas, Panos ;
Kanoni, Stavroula ;
Willenborg, Christina ;
Farrall, Martin ;
Assimes, Themistocles L. ;
Thompson, John R. ;
Ingelsson, Erik ;
Saleheen, Danish ;
Erdmann, Jeanette ;
Goldstein, Benjamin A. ;
Stirrups, Kathleen ;
Koenig, Inke R. ;
Cazier, Jean-Baptiste ;
Johansson, Asa ;
Hall, Alistair S. ;
Lee, Jong-Young ;
Willer, Cristen J. ;
Chambers, John C. ;
Esko, Tonu ;
Folkersen, Lasse ;
Goel, Anuj ;
Grundberg, Elin ;
Havulinna, Aki S. ;
Ho, Weang K. ;
Hopewell, Jemma C. ;
Eriksson, Niclas ;
Kleber, Marcus E. ;
Kristiansson, Kati ;
Lundmark, Per ;
Lyytikainen, Leo-Pekka ;
Rafelt, Suzanne ;
Shungin, Dmitry ;
Strawbridge, Rona J. ;
Thorleifsson, Gudmar ;
Tikkanen, Emmi ;
Van Zuydam, Natalie ;
Voight, Benjamin F. ;
Waite, Lindsay L. ;
Zhang, Weihua ;
Ziegler, Andreas ;
Absher, Devin ;
Altshuler, David ;
Balmforth, Anthony J. ;
Barroso, Ines ;
Braund, Peter S. ;
Burgdorf, Christof ;
Claudi-Boehm, Simone ;
Cox, David ;
Dimitriou, Maria ;
Do, Ron .
NATURE GENETICS, 2013, 45 (01) :25-U52
[10]   ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography [J].
Douglas, Pamela S. ;
Garcia, Mario J. ;
Haines, David E. ;
Lai, Wyman W. ;
Manning, Warren J. ;
Patel, Ayan R. ;
Picard, Michael H. ;
Polk, Donna M. ;
Ragosta, Michael ;
Ward, R. Parker ;
Weiner, Rory B. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 57 (09) :1126-1166