Metrical theorems for inhomogeneous Diophantine approximation in positive characteristic

被引:5
作者
Fuchs, Michael [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
关键词
formal Laurent series; inhomogeneous Diophantine approximation; Diophantine approximation with restricted denominators; strong laws of large numbers; Schmidt's method; FORMAL LAURENT SERIES; ASYMPTOTIC-BEHAVIOR; NUMBER; FIELD;
D O I
10.4064/aa141-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:191 / 208
页数:18
相关论文
共 12 条
[1]  
BERLEKAMP E., 2015, Algebraic Coding Theory
[2]   Asymptotic behavior of the number of solutions for non-Archimedean Diophantine approximations with restricted denominators [J].
Berthe, V. ;
Nakada, H. ;
Natsui, R. .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (04) :849-866
[3]  
CASSELS JWS, 1951, INTRO DIOPHANTINE AP
[4]   A quantitative Khintchine-Groshev type theorem over a field of formal series [J].
Dodson, MM ;
Kristensen, S ;
Levesley, J .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (02) :171-177
[5]   A rigorous proof of the Waterloo algorithm for the discrete logarithm problem [J].
Drmota, M ;
Panario, D .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 26 (1-3) :229-241
[7]  
HARMAN G, 1998, LONDON MATH SOC MONO, V18
[8]   Inhomogeneous Diophantine approximation over the field of formal Laurent series [J].
Ma, Chao ;
Su, Wei-Yi .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (02) :361-378
[9]   Asymptotic behavior of the number of solutions for non-Archimedean Diophantine approximations [J].
Nakada, Hitoshi ;
Natsui, Rie .
ACTA ARITHMETICA, 2006, 125 (03) :203-214
[10]  
Schmidt W., 1960, Canadian J. Math., V12, P619