The secant line variety to the varieties of reducible plane curves

被引:7
作者
Catalisano, Maria Virginia [1 ]
Geramita, Anthony V. [2 ,3 ]
Gimigliano, Alessandro [4 ]
Shin, Yong-Su [5 ]
机构
[1] Univ Genoa, Dipartimento Ingn Meccan Energet Gest & Trasporti, Genoa, Italy
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[3] Univ Genoa, Dipartimento Matemat, Genoa, Italy
[4] Univ Bologna, Dipartmento Matemat, Bologna, Italy
[5] Sungshin Womens Univ, Dept Math, Seoul 136742, South Korea
基金
新加坡国家研究基金会;
关键词
Secant variety; Reducible plane curves; Defectivity; STAR-CONFIGURATION; POINTS;
D O I
10.1007/s10231-014-0470-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let lambda = [d(1),..., d(r)] be a partition of d. Consider the variety X-2,X-lambda subset of P-N, N = ((d+ 2)(2)) - 1, parameterizing forms F is an element of k[ x(0), x(1), x(2)](d) which are the product of r >= 2 forms F-1,..., F-r, with deg F-i = d(i). We study the secant line variety sigma(2)(X-2,X-lambda), and we determine, for all r and d, whether or not such a secant variety is defective. Defectivity occurs in infinitely many "unbalanced" cases.
引用
收藏
页码:423 / 443
页数:21
相关论文
共 28 条
[1]  
Abo H, 2009, T AM MATH SOC, V361, P767
[2]   Varieties of completely decomposable forms and their secants [J].
Abo, Hirotachi .
JOURNAL OF ALGEBRA, 2014, 403 :135-153
[3]   THE MINIMAL FREE RESOLUTION OF A STAR-CONFIGURATION IN Pn AND THE WEAK LEFSCHETZ PROPERTY [J].
Ahn, Jeaman ;
Shin, Yong Su .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) :405-417
[4]  
Alexander J., 1995, J ALGEBRAIC GEOM, V4, P201
[5]   On the variety parameterizing completely decomposable polynomials [J].
Arrondo, Enrique ;
Bernardi, Alessandra .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (03) :201-220
[6]  
B├a┬╝rgisser P., 1997, ALGEBRAIC COMPLEXITY
[7]   COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS [J].
Bocci, Cristiano ;
Harbourne, Brian .
JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (03) :399-417
[8]   Complete intersections on general hypersurfaces [J].
Carlini, Enrico ;
Chiantini, Luca ;
Geramita, Anthony V. .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 :121-136
[9]   STAR CONFIGURATION POINTS AND GENERIC PLANE CURVES [J].
Carlini, Enrico ;
Van Tuyl, Adam .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (12) :4181-4192
[10]  
Carlini E, 2010, MICH MATH J, V59, P269