Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours

被引:276
作者
Lee, Bumwhee [1 ]
Lee, Kunwoo [2 ]
Panda, Shree [1 ]
Gonzales-Rojas, Rodrigo [1 ]
Chong, Anthony [2 ]
Bugay, Vladislav [1 ]
Park, Hyo Min [2 ]
Brenner, Robert [1 ]
Murthy, Niren [3 ]
Lee, Hye Young [1 ]
机构
[1] Univ Texas Hlth Sci Ctr San Antonio, Dept Cellular & Integrat Physiol, San Antonio, TX 78229 USA
[2] GenEdit Inc, Berkeley, CA USA
[3] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
来源
NATURE BIOMEDICAL ENGINEERING | 2018年 / 2卷 / 07期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
AUTISM SPECTRUM DISORDER; RNA-GUIDED ENDONUCLEASE; MENTAL-RETARDATION; CAS9; RIBONUCLEOPROTEIN; GOLD NANOPARTICLES; KNOCKOUT MOUSE; GENE-THERAPY; MICE; MGLUR5; CELLS;
D O I
10.1038/s41551-018-0252-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Technologies that can safely edit genes in the brains of adult animals may revolutionize the treatment of neurological diseases and the understanding of brain function. Here, we demonstrate that intracranial injection of CRISPR-Gold, a nonviral delivery vehicle for the CRISPR-Cas9 ribonucleoprotein, can edit genes in the brains of adult mice in multiple mouse models. CRISPR-Gold can deliver both Cas9 and Cpf1 ribonucleoproteins, and can edit all of the major cell types in the brain, including neurons, astrocytes and microglia, with undetectable levels of toxicity at the doses used. We also show that CRISPR-Gold designed to target the metabotropic glutamate receptor 5 (mGluR5) gene can efficiently reduce local mGluR5 levels in the striatum after an intracranial injection. The effect can also rescue mice from the exaggerated repetitive behaviours caused by fragile X syndrome, a common single-gene form of autism spectrum disorders. CRISPR-Gold may significantly accelerate the development of brain-targeted therapeutics and enable the rapid development of focal brain-knockout animal models.
引用
收藏
页码:497 / 507
页数:11
相关论文
共 54 条
  • [1] Glia: an emerging target for neurological disease therapy
    Almad, Akshata A.
    Maragakis, Nicholas J.
    [J]. STEM CELL RESEARCH & THERAPY, 2012, 3
  • [2] Lentiviral transduction of microglial cells
    Balcaitis, S
    Weinstein, JR
    Li, S
    Chamberlain, JS
    Möller, T
    [J]. GLIA, 2005, 50 (01) : 48 - 55
  • [3] Therapeutic implications of the mGluR theory of fragile X mental retardation
    Bear, MF
    [J]. GENES BRAIN AND BEHAVIOR, 2005, 4 (06) : 393 - 398
  • [4] The mGIuR theory of fragile X mental retardation
    Bear, MF
    Huber, KM
    Warren, ST
    [J]. TRENDS IN NEUROSCIENCES, 2004, 27 (07) : 370 - 377
  • [5] Easy quantitative assessment of genome editing by sequence trace decomposition
    Brinkman, Eva K.
    Chen, Tao
    Amendola, Mario
    van Steensel, Bas
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
  • [6] Burke B, 2002, J LEUKOCYTE BIOL, V72, P417
  • [7] Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles
    Chen, Yu-Shiun
    Hung, Yao-Ching
    Lin, Li-Wei
    Liau, Ian
    Hong, Meng-Yeng
    Huang, G. Steve
    [J]. NANOTECHNOLOGY, 2010, 21 (48)
  • [8] Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
    Cho, Seung Woo
    Kim, Sojung
    Kim, Jong Min
    Kim, Jin-Soo
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (03) : 230 - 232
  • [9] Driving Opposing Behaviors with Ensembles of Piriform Neurons
    Choi, Gloria B.
    Stettler, Dan D.
    Kallman, Benjamin R.
    Bhaskar, Shakthi T.
    Fleischmann, Alexander
    Axel, Richard
    [J]. CELL, 2011, 146 (06) : 1003 - 1014
  • [10] Multiplex Genome Engineering Using CRISPR/Cas Systems
    Cong, Le
    Ran, F. Ann
    Cox, David
    Lin, Shuailiang
    Barretto, Robert
    Habib, Naomi
    Hsu, Patrick D.
    Wu, Xuebing
    Jiang, Wenyan
    Marraffini, Luciano A.
    Zhang, Feng
    [J]. SCIENCE, 2013, 339 (6121) : 819 - 823