Colebrook-White formula for pipe flows

被引:40
作者
Keady, G [1 ]
机构
[1] Univ Western Australia, Dept Math, Nedlands, WA 6907, Australia
来源
JOURNAL OF HYDRAULIC ENGINEERING-ASCE | 1998年 / 124卷 / 01期
关键词
D O I
10.1061/(ASCE)0733-9429(1998)124:1(96)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Flow-resistance laws-as used, for example, in water-supply pipe networks-are formulas relating the volume flow rate, q, along a pipe to the pressure-head difference, t, between its ends, such that q = psi(t), in which psi is monotonic. The simple Hazen-Williams power law is often used, but in appropriate circumstances the more complicated Colebrook-White law (CW) may better represent aspects of the experimental data. Result 1, the first and easiest-to-state result in the paper, is that phi(CW). the inverse of psi(CW) can, be expressed in terms of the Lambert W-function (eorless et al, 1993). Result 2 summarizes one use of this, and of related results, in convex optimization problems describing equilibrium flows in pipe networks.
引用
收藏
页码:96 / 97
页数:2
相关论文
共 9 条
[1]  
[Anonymous], 1983, COMPUTATIONAL HYDRAU
[2]  
BARRY DA, 1995, ACM T MATH SOFTWARE, V21, P172, DOI 10.1145/203082.203088
[3]   BRAESS PARADOX AND POWER-LAW NONLINEARITIES IN NETWORKS [J].
CALVERT, B ;
KEADY, G .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1993, 35 :1-22
[4]  
CALVERT B, 1995, P 1 WORLD C NONL AN, V3, P2223
[5]   INTEGRATED CAD PACKAGE FOR STORMWATER DRAINAGE NETWORKS [J].
CHAU, KW .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 1995, 121 (04) :336-339
[6]   SOLVING PIPE NETWORK ANALYSIS PROBLEM USING OPTIMIZATION TECHNIQUES [J].
COLLINS, M ;
COOPER, L ;
HELGASON, R ;
KENNINGTON, J ;
LEBLANC, L .
MANAGEMENT SCIENCE, 1978, 24 (07) :747-760
[7]  
Corless R., 1993, MAPLE TECHNICAL NEWS, V9, P12
[8]  
Keady G., 1995, COLEBROOK WHITE FORM
[9]  
Rockafellar R.T., 1984, Network Flows and Monotropic Optimization