Benefits in cardiac function by CD38 suppression: Improvement in NAD+ levels, exercise capacity, heart rate variability and protection against catecholamine-induced ventricular arrhythmias

被引:16
作者
Agorrody, Guillermo [1 ,2 ]
Peclat, Thais R. [3 ]
Peluso, Gonzalo [2 ]
Gonano, Luis A. [4 ]
Santos, Leonardo [6 ]
van Schooten, Wim [5 ]
Chini, Claudia C. S. [3 ]
Escande, Carlos [6 ]
Chini, Eduardo N. [3 ]
Contreras, Paola [6 ]
机构
[1] Univ Republica, Fac Med, Hosp Clin, Dept Fisiopatol, Montevideo 11600, Uruguay
[2] Univ Republica, Fac Med, Dept Fisiol, Lab Fisiol Cardiovasc, Montevideo 11600, Uruguay
[3] Mayo Clin, Signal Transduct & Mol Nutr Lab, Kogod Aging Ctr, Dept Anesthesiol & Perioperat Med,Coll Med, Rochester, MN 55905 USA
[4] Univ Nacl La Plata, Ctr Invest Cardiovasc Horacio Cingolani, CONICET La Plata, Fac Ciencias Med, RA-1900 La Plata, Buenos Aires, Argentina
[5] TeneoBio, Newark, CA 94560 USA
[6] Inst Pasteur Montevideo, Lab Metab Dis & Aging, INDICyO Program, Montevideo 11400, Uruguay
关键词
CD38; NAD(+); Heart; Exercise capacity; Calcium; Action potential; Arrhythmia; CYCLIC ADP-RIBOSE; CADP-RIBOSE; CA2+; DYSFUNCTION; INHIBITION; MECHANISMS; RELEASE; DEFICIT; AGE;
D O I
10.1016/j.yjmcc.2022.01.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
CD38 enzymatic activity regulates NAD(+) and cADPR levels in mammalian tissues, and therefore has a prominent role in cellular metabolism and calcium homeostasis. Consequently, it is reasonable to hypothesize about its involvement in cardiovascular physiology as well as in heart related pathological conditions. Aim: To investigate the role of CD38 in cardiovascular performance, and its involvement in cardiac electrophysiology and calcium-handling. Methods and results: When submitted to a treadmill exhaustion test, a way of evaluating cardiovascular performance, adult male CD38KO mice showed better exercise capacity. This benefit was also obtained in genetically modified mice with catalytically inactive (CI) CD38 and in WT mice treated with antibody 68 (Ab68) which blocks CD38 activity. Hearts from these 3 groups (CD38KO, CD38CI and Ab68) showed increased NAD(+) levels. When CD38KO mice were treated with FK866 which inhibits NAD(+) biosynthesis, exercise capacity as well as NAD(+) in heart tissue decreased to WT levels. Electrocardiograms of conscious unrestrained CD38KO and CD38CI mice showed lower basal heart rates and higher heart rate variability than WT mice. Although inactivation of CD38 in mice resulted in increased SERCA2a expression in the heart, the frequency of spontaneous calcium release from the sarcoplasmic reticulum under stressful conditions (high extracellular calcium concentration) was lower in CD38KO ventricular myocytes. When mice were challenged with caffeine-epinephrine, CD38KO mice had a lower incidence of bidirectional ventricular tachycardia when compared to WT ones. Conclusion: CD38 inhibition improves exercise performance by regulating NAD(+) homeostasis. CD38 is involved in cardiovascular function since its genetic ablation decreases basal heart rate, increases heart rate variability and alters calcium handling in a way that protects mice from developing catecholamine induced ventricular arrhythmias.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 52 条
[1]   Regulation of intracellular levels of NAD: A novel role for CD38 [J].
Aksoy, Pinar ;
White, Thomas A. ;
Thompson, Michael ;
Chini, Eduardo N. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 345 (04) :1386-1392
[2]   Calcium signaling by cyclic ADP-ribose, NAADP, and inositol trisphosphate are involved in distinct functions in ascidian oocytes [J].
Albrieux, M ;
Lee, HC ;
Villaz, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) :14566-14574
[3]   DEVELOPMENT OF OUR CURRENT CONCEPTS OF BIOLOGICAL OXIDATIONS [J].
BALL, EG .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1974, 5 (1-2) :35-46
[4]   Inhibition of CD38 with the Thiazoloquin(az)olin(on)e 78c Protects the Heart against Postischemic Injury [J].
Boslett, James ;
Reddy, Nikhil ;
Alzarie, Yasmin A. ;
Zweier, Jay L. .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2019, 369 (01) :55-64
[5]   Genetic deletion of CD38 confers post-ischemic myocardial protection through preserved pyridine nucleotides [J].
Boslett, James ;
Helal, Moustafa ;
Chini, Eduardo ;
Zweier, Jay L. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2018, 118 :81-94
[6]   Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia-reoxygenation triggering NAD(P)H depletion [J].
Boslett, James ;
Hemann, Craig ;
Christofi, Fedias L. ;
Zweier, Jay L. .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2018, 314 (03) :C297-C309
[7]   CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism [J].
Camacho-Pereira, Juliana ;
Tarrago, Mariana G. ;
Chini, Claudia C. S. ;
Nin, Veronica ;
Escande, Carlos ;
Warner, Gina M. ;
Puranik, Amrutesh S. ;
Schoon, Renee A. ;
Reid, Joel M. ;
Galina, Antonio ;
Chini, Eduardo N. .
CELL METABOLISM, 2016, 23 (06) :1127-1139
[8]   Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia [J].
Cerrone, Marina ;
Noujaim, Sami F. ;
Tolkacheva, Elena G. ;
Talkachou, Arkadzi ;
O'Connell, Ryan ;
Berenfeld, Omer ;
Anumonwo, Justus ;
Pandit, Sandeep V. ;
Vikstrom, Karen ;
Napolitano, Carlo ;
Priori, Silvia G. ;
Jalife, Jose .
CIRCULATION RESEARCH, 2007, 101 (10) :1039-1048
[9]   Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility [J].
Chiang, Shian-Huey ;
Harrington, W. Wallace ;
Luo, Guizhen ;
Milliken, Naphtali O. ;
Ulrich, John C. ;
Chen, Jing ;
Rajpal, Deepak K. ;
Qian, Ying ;
Carpenter, Tiffany ;
Murray, Rusty ;
Geske, Robert S. ;
Stimpson, Stephen A. ;
Kramer, Henning F. ;
Haffner, Curt D. ;
Becherer, J. David ;
Preugschat, Frank ;
Billin, Andrew N. .
PLOS ONE, 2015, 10 (08)
[10]   CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels [J].
Chini, Claudia C. S. ;
Peclat, Thais R. ;
Warner, Gina M. ;
Kashyap, Sonu ;
Espindola-Netto, Jair Machado ;
de Oliveira, Guilherme C. ;
Gomez, Lilian S. ;
Hogan, Kelly A. ;
Tarrago, Mariana G. ;
Puranik, Amrutesh S. ;
Agorrody, Guillermo ;
Thompson, Katie L. ;
Dang, Kevin ;
Clarke, Starlynn ;
Childs, Bennett G. ;
Kanamori, Karina S. ;
Witte, Micaela A. ;
Vidal, Paola ;
Kirkland, Anna L. ;
De Cecco, Marco ;
Chellappa, Karthikeyani ;
McReynolds, Melanie R. ;
Jankowski, Connor ;
Tchkonia, Tamara ;
Kirkland, James L. ;
Sedivy, John M. ;
van Deursen, Jan M. ;
Baker, Darren J. ;
van Schooten, Wim ;
Rabinowitz, Joshua D. ;
Baur, Joseph A. ;
Chini, Eduardo N. .
NATURE METABOLISM, 2020, 2 (11) :1284-1304