Pectin powder is degraded during storage and transport by demethoxylation and depolymerisation. The degradation mechanisms and especially the influence of pre-treatments on the degradation reactions are not completely understood. In this study, commercial citrus pectin was modified by either acidic or alkaline demethoxylation. The modified pectins, as well as the commercial pectin, were thermally degraded during four weeks of storage at 60 degrees C and 80% relative humidity. Demethoxylation and depolymerisation as well as colour alterations were examined during degradation, and the course of the reactions was monitored. It was found that the type of pre-treatment during modification determined the material properties and, thus, the water uptake of the modified pectin powders. The resulting water availability in the samples was crucial to the extent of demethoxylation and to the type and intensity of depolymerisation since some of these reactions competed for the water in the climate chamber. The pre-treatment also determined the content of neutral sugars and sodium ions of the modified pectins. High contents of these components limited the extent of degradation in different ways. A previously assumed third depolymerisation mechanism of pectins, beside backbone hydrolysis and beta-elimination, was confirmed. (C) 2018 Elsevier Ltd. All rights reserved.