On block triangular matrices with signed Drazin inverse

被引:2
作者
Bu, Changjiang [1 ]
Wang, Wenzhe [1 ]
Zhou, Jiang [1 ,2 ]
Sun, Lizhu [3 ]
机构
[1] Harbin Engn Univ, Coll Sci, Harbin 150001, Heilongjiang Pr, Peoples R China
[2] Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Heilongjiang Pr, Peoples R China
[3] Harbin Inst Technol, Sch Sci, Harbin 150001, Heilongjiang Pr, Peoples R China
基金
中国国家自然科学基金;
关键词
sign pattern matrix; signed Drazin inverse; strong sign nonsingular matrix; GENERALIZED INVERSES; PATTERNS;
D O I
10.1007/s10587-014-0141-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sign pattern of a real matrix A, denoted by sgnA, is the (+, -, 0)-matrix obtained from A by replacing each entry by its sign. Let Q(A) denote the set of all real matrices B such that sgnB = sgnA. For a square real matrix A, the Drazin inverse of A is the unique real matrix X such that A (k+1) X = A (k) , XAX = X and AX = XA, where k is the Drazin index of A. We say that A has signed Drazin inverse if for any , where A (d) denotes the Drazin inverse of A. In this paper, we give necessary conditions for some block triangular matrices to have signed Drazin inverse.
引用
收藏
页码:883 / 892
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1991, ENCY MATH ITS APPL
[2]  
Brualdi R.A., 1995, Cambridge Tracts in Mathematics, V116
[3]   BIPARTITE GRAPHS AND INVERSE SIGN PATTERNS OF STRONG SIGN-NONSINGULAR MATRICES [J].
BRUALDI, RA ;
CHAVEY, KL ;
SHADER, BL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (01) :133-150
[4]  
Campbell S. L., 1979, SURVEYS REFERENCE WO, V4
[5]   Graphical description of group inverses of certain bipartite matrices [J].
Catral, M. ;
Olesky, D. D. ;
van den Driessche, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) :36-52
[6]   Potentially nilpotent sign pattern matrices [J].
Eschenbach, CA ;
Li, ZS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) :81-99
[7]   LEAST-SQUARES SIGN-SOLVABILITY [J].
SHADER, BL .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (04) :1056-1073
[8]   Characterizations of some classes of strong sign nonsingular diagraphs [J].
Shao, JY ;
Hu, ZX .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :159-172
[9]   Matrices with special sign patterns of signed generalized inverses [J].
Shao, JY ;
He, JL ;
Shan, HY .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (04) :990-1002
[10]   Matrices with signed generalized inverses [J].
Shao, JY ;
Shan, HY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 322 (1-3) :105-127