Developing QSAR Models with Defined Applicability Domains on PPARγ Binding Affinity Using Large Data Sets and Machine Learning Algorithms

被引:72
作者
Wang, Zhongyu [1 ]
Chen, Jingwen [1 ]
Hong, Huixiao [2 ]
机构
[1] Dalian Univ Technol, Sch Environm Sci & Technol, Dalian Key Lab Chem Risk Control & Pollut Prevent, Key Lab Ind Ecol & Environm Engn,Minist Educ, Dalian 116024, Peoples R China
[2] US FDA, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
computational toxicology; applicability domain; activity cliffs; structure-activity landscape; endocrine disruption; nuclear receptor; regression model; NUCLEAR RECEPTORS PPAR-GAMMA-1; EFFECT-DIRECTED ANALYSIS; LIGAND-BINDING; CHEMICAL-MIXTURES; IN-SILICO; ADIPOGENESIS; ACTIVATION; PREDICTION; TOXICOLOGY; OBESOGENS;
D O I
10.1021/acs.est.0c07040
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chemicals may cause adverse effects on human health through binding to peroxisome proliferator-activated receptor gamma (PPAR gamma). Hence, binding affinity is useful for evaluating chemicals with potential endocrine-disrupting effects. Quantitative structure-activity relationship (QSAR) regression models with defined applicability domains (ADs) are important to enable efficient screening of chemicals with PPAR gamma binding activity. However, lack of large data sets hindered the development of QSAR models. In this study, based on PPAR gamma binding affinity data sets curated from various sources, 30 QSAR models were developed using molecular fingerprints, two-dimensional descriptors, and five machine learning algorithms. Structure-activity landscapes (SALs) of the training compounds were described by network-like similarity graphs (NSGs). Based on the NSGs, local discontinuity scores were calculated and found to be positively correlated with the cross-validation absolute prediction errors of the models using the different training sets, descriptors, and algorithms. Moreover, innovative ADs were defined based on pairwise similarities between compounds and were found to outperform some conventional ADs. The curated data sets and developed regression models could be useful for evaluating PPAR gamma-involved adverse effects of chemicals. The SAL analysis and the innovative ADs could facilitate understanding of prediction results from QSAR models.
引用
收藏
页码:6857 / 6866
页数:10
相关论文
共 81 条
  • [41] Hormone Activity of Hydroxylated Polybrominated Diphenyl Ethers on Human Thyroid Receptor-β: In Vitro and In Silico Investigations
    Li, Fei
    Xie, Qing
    Li, Xuehua
    Li, Na
    Chi, Ping
    Chen, Jingwen
    Wang, Zijian
    Hao, Ce
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2010, 118 (05) : 602 - 606
  • [42] Big-data and machine learning to revamp computational toxicology and its use in risk assessment
    Luechtefeld, Thomas
    Rowlands, Craig
    Hartung, Thomas
    [J]. TOXICOLOGY RESEARCH, 2018, 7 (05) : 732 - 744
  • [43] On outliers and activity cliffs - Why QSAR often disappoints
    Maggiora, Gerald M.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (04) : 1535 - 1535
  • [44] CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity
    Mansouri, Kamel
    Kleinstreuer, Nicole
    Abdelaziz, Ahmed M.
    Alberga, Domenico
    Alves, Vinicius M.
    Andersson, Patrik L.
    Andrade, Carolina H.
    Bai, Fang
    Balabin, Ilya
    Ballabio, Davide
    Benfenati, Emilio
    Bhhatarai, Barun
    Boyer, Scott
    Chen, Jingwen
    Consonni, Viviana
    Farag, Sherif
    Fourches, Denis
    Garcia-Sosa, Alfonso T.
    Gramatica, Paola
    Grisoni, Francesca
    Grulke, Chris M.
    Hong, Huixiao
    Horvath, Dragos
    Hu, Xin
    Huang, Ruili
    Jeliazkova, Nina
    Li, Jiazhong
    Li, Xuehua
    Liu, Huanxiang
    Manganelli, Serena
    Mangiatordi, Giuseppe F.
    Maran, Uko
    Marcou, Gilles
    Martin, Todd
    Muratov, Eugene
    Dac-Trung Nguyen
    Nicolotti, Orazio
    Nikolov, Nikolai G.
    Norinder, Ulf
    Papa, Ester
    Petitjean, Michel
    Piir, Geven
    Pogodin, Pavel
    Poroikov, Vladimir
    Qiao, Xianliang
    Richard, Ann M.
    Roncaglioni, Alessandra
    Ruiz, Patricia
    Rupakheti, Chetan
    Sakkiah, Sugunadevi
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2020, 128 (02)
  • [45] CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
    Mansouri, Kamel
    Abdelaziz, Ahmed
    Rybacka, Aleksandra
    Roncaglioni, Alessandra
    Tropsha, Alexander
    Varnek, Alexandre
    Zakharov, Alexey
    Worth, Andrew
    Richard, Ann M.
    Grulke, Christopher M.
    Trisciuzzi, Daniela
    Fourches, Denis
    Horvath, Dragos
    Benfenati, Emilio
    Muratov, Eugene
    Wedebye, Eva Bay
    Grisoni, Francesca
    Mangiatordi, Giuseppe F.
    Incisivo, Giuseppina M.
    Hong, Huixiao
    Ng, Hui W.
    Tetko, Igor V.
    Balabin, Ilya
    Kancherla, Jayaram
    Shen, Jie
    Burton, Julien
    Nicklaus, Marc
    Cassotti, Matteo
    Nikolov, Nikolai G.
    Nicolotti, Orazio
    Andersson, Patrik L.
    Zang, Qingda
    Politi, Regina
    Beger, Richard D.
    Todeschini, Roberto
    Huang, Ruili
    Farag, Sherif
    Rosenberg, Sine A.
    Slavov, Svetoslav
    Hu, Xin
    Judson, Richard S.
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2016, 124 (07) : 1023 - 1033
  • [46] ChEMBL: towards direct deposition of bioassay data
    Mendez, David
    Gaulton, Anna
    Bento, A. Patricia
    Chambers, Jon
    De Veij, Marleen
    Felix, Eloy
    Magarinos, Maria Paula
    Mosquera, Juan F.
    Mutowo, Prudence
    Nowotka, Michal
    Gordillo-Maranon, Maria
    Hunter, Fiona
    Junco, Laura
    Mugumbate, Grace
    Rodriguez-Lopez, Milagros
    Atkinson, Francis
    Bosc, Nicolas
    Radoux, ChrisJ
    Segura-Cabrera, Aldo
    Hersey, Anne
    Leach, Andrew R.
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D930 - D940
  • [47] Mordred: a molecular descriptor calculator
    Moriwaki, Hirotomo
    Tian, Yu-Shi
    Kawashita, Norihito
    Takagi, Tatsuya
    [J]. JOURNAL OF CHEMINFORMATICS, 2018, 10
  • [48] Muratov EN, 2020, CHEM SOC REV, V49, P3525, DOI 10.1039/d0cs00098a
  • [49] Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships - The report and recommendations of ECVAM Workshop 52
    Netzeva, TI
    Worth, AP
    Aldenberg, T
    Benigni, R
    Cronin, MTD
    Gramatica, P
    Jaworska, JS
    Kahn, S
    Klopman, G
    Marchant, CA
    Myatt, G
    Nikolova-Jeliazkova, N
    Patlewicz, GY
    Perkins, R
    Roberts, DW
    Schultz, TW
    Stanton, DT
    van de Sandt, JJM
    Tong, WD
    Veith, G
    Yang, CH
    [J]. ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2005, 33 (02): : 155 - 173
  • [50] Development of a scintillation proximity assay for peroxisome proliferator-activated receptor γ ligand binding domain
    Nichols, JS
    Parks, DJ
    Gonsler, TG
    Blanchard, SG
    [J]. ANALYTICAL BIOCHEMISTRY, 1998, 257 (02) : 112 - 119