Lattice Boltzmann Method for Stochastic Convection-Diffusion Equations

被引:2
|
作者
Zhao, Weifeng [1 ]
Huang, Juntao [2 ]
Yong, Wen-An [3 ,4 ]
机构
[1] Univ Sci & Technol Beijing, Dept Appl Math, Beijing 100083, Peoples R China
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Zhou Pei Yuan Ctr Appl Math, Beijing 100084, Peoples R China
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2021年 / 9卷 / 02期
基金
中国国家自然科学基金;
关键词
stochastic convection-diffusion equations; stochastic Galerkin method; lattice Boltzmann method; weighted L-2-stability; complex boundaries; BOUNDARY-CONDITIONS; ADVECTION-DIFFUSION; TRANSPORT-EQUATIONS; POLYNOMIAL CHAOS; GALERKIN METHODS; UNCERTAINTY; MODEL; FLUID; PERMEABILITY; SIMULATIONS;
D O I
10.1137/19M1270665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a lattice Boltzmann method (LBM) for stochastic convection-diffusion equations (CDEs). The stochastic Galerkin method is employed to transform the stochastic CDE into a system of deterministic CDEs and the LBM is then used to discretize the deterministic CDEs. The consistency of the method is shown with the Maxwell iteration. Thanks to the property that the diffusion coefficient matrix of the deterministic CDEs is positive definite, we prove the weighted L-2-stability of the LBM. With this stability, the convergence of the method can be directly established. Numerical experiments are conducted to verify the accuracy of the LBM and demonstrate its effectiveness for stochastic CDEs. The numerical results not only are in good agreement with those existing in the literature but also show the ability of the LBM for stochastic problems with complex boundaries.
引用
收藏
页码:536 / 563
页数:28
相关论文
共 50 条
  • [31] Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method
    Chai, Zhenhua
    Zhao, T. S.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [32] Second-order curved interface treatments of the lattice Boltzmann method for convection-diffusion equations with conjugate interfacial conditions
    Hu, Ze-Xi
    Huang, Juntao
    Huang, Wei -Xi
    Cui, Gui-Xiang
    COMPUTERS & FLUIDS, 2017, 144 : 60 - 73
  • [33] A Spectral Stochastic Semi-Lagrangian Method for Convection-Diffusion Equations with Uncertainty
    El-Amrani, Mofdi
    Seaid, Mohammed
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (03) : 371 - 393
  • [34] A Spectral Stochastic Semi-Lagrangian Method for Convection-Diffusion Equations with Uncertainty
    Mofdi El-Amrani
    Mohammed Seaïd
    Journal of Scientific Computing, 2009, 39 : 371 - 393
  • [35] A block triple-relaxation-time lattice Boltzmann model for nonlinear anisotropic convection-diffusion equations
    Zhao, Yong
    Wu, Yao
    Chai, Zhenhua
    Shi, Baochang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2550 - 2573
  • [36] Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations
    Huang, H-B
    Lu, X-Y
    Sukop, M. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (05)
  • [37] Lattice Boltzmann equation for convection-diffusion flows with Neumann boundary condition
    Zheng, Lin
    Zheng, Song
    Zhai, Qinglan
    PHYSICAL REVIEW E, 2025, 111 (03)
  • [38] A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection-Diffusion Equations
    Chai, Zhenhua
    Shi, Baochang
    Guo, Zhaoli
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (01) : 355 - 390
  • [39] Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation
    Yoshida, Hiroaki
    Kobayashi, Takayuki
    Hayashi, Hidemitsu
    Kinjo, Tomoyuki
    Washizu, Hitoshi
    Fukuzawa, Kenji
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [40] A New Method for Solving Convection-Diffusion Equations
    Liao, Wenyuan
    Zhu, Jianping
    CSE 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, 2008, : 107 - +