Rate estimates of gradient blowup for a heat equation with exponential nonlinearity

被引:32
作者
Zhang, Zhengce [1 ]
Hu, Bei [2 ]
机构
[1] Xi An Jiao Tong Univ, Coll Sci, Xian 710049, Peoples R China
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
Gradient blowup; Rate estimate; Nonlinear gradient source; SINGULAR STEADY-STATE; PARABOLIC EQUATIONS; GLOBAL-SOLUTIONS;
D O I
10.1016/j.na.2010.02.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional semilinear parabolic equation u(t) = u(xx) + e(u)x, for which the spatial derivative of solutions becomes unbounded in finite time while the solutions themselves remain bounded. We establish estimates of blowup rate upper and lower bounds. We prove that in this case the blowup rate does not match the one obtained by the rescaling method. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4594 / 4601
页数:8
相关论文
共 23 条
[11]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[12]   INTERIOR DERIVATIVE BLOW-UP FOR QUASILINEAR PARABOLIC EQUATIONS [J].
Giga, Yoshikazu .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1995, 1 (03) :449-461
[13]  
Guo JS, 2008, DISCRETE CONT DYN-A, V20, P927
[14]   Blowup rate for heat equation in Lipschitz domains with nonlinear heat source terms on the boundary [J].
Guo, JS ;
Hu, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) :28-49
[15]   BLOW-UP BEHAVIOR OF ONE-DIMENSIONAL SEMILINEAR PARABOLIC EQUATIONS [J].
HERRERO, MA ;
VELAZQUEZ, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (02) :131-189
[16]   BLOW-UP PROFILES IN ONE-DIMENSIONAL, SEMILINEAR PARABOLIC PROBLEMS [J].
HERRERO, MA ;
VELAZQUEZ, JJL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (1-2) :205-219
[17]  
Ladyzenskaya O.A., 1967, LINEAR QUASILINEAR E
[18]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288
[19]  
Samarskii A. A., 1995, Blow-Up in Quasilinear Parabolic Equations
[20]  
Souplet P, 2006, DISCRETE CONT DYN S, V14, P221