Rate estimates of gradient blowup for a heat equation with exponential nonlinearity

被引:32
作者
Zhang, Zhengce [1 ]
Hu, Bei [2 ]
机构
[1] Xi An Jiao Tong Univ, Coll Sci, Xian 710049, Peoples R China
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
Gradient blowup; Rate estimate; Nonlinear gradient source; SINGULAR STEADY-STATE; PARABOLIC EQUATIONS; GLOBAL-SOLUTIONS;
D O I
10.1016/j.na.2010.02.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional semilinear parabolic equation u(t) = u(xx) + e(u)x, for which the spatial derivative of solutions becomes unbounded in finite time while the solutions themselves remain bounded. We establish estimates of blowup rate upper and lower bounds. We prove that in this case the blowup rate does not match the one obtained by the rescaling method. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4594 / 4601
页数:8
相关论文
共 23 条
[1]   BLOW UP FOR A DIFFUSION-ADVECTION EQUATION [J].
ALIKAKOS, ND ;
BATES, PW ;
GRANT, CP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 113 :181-190
[2]  
Angenent SigurdB., 1996, Differential and Integral Equations, V9, P865
[3]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[4]  
Arrieta JM, 2004, ANN SCUOLA NORM-SCI, V3, P1
[5]   On the interior derivative blow-up for the curvature evolution of capillary surfaces [J].
Asai, K ;
Ishimura, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) :835-840
[6]  
Conner G.R., 1996, DIFFERENTIAL INTEGRA, V9, P719
[7]  
Fila M., 1994, Differ. Integral Equ, V7, P811
[8]   Convergence to a singular steady state of a parabolic equation with gradient blow-up [J].
Fila, Marek ;
Taskinen, Jari ;
Winkler, Michael .
APPLIED MATHEMATICS LETTERS, 2007, 20 (05) :578-582
[9]   REFINED ASYMPTOTICS FOR THE BLOWUP OF UT-DELTA-U = UP [J].
FILIPPAS, S ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (07) :821-869
[10]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447