Hermite-Hadamard Type Inequalities Involving Nonlocal Conformable Fractional Integrals

被引:0
|
作者
Set, E. [1 ]
Choi, J. [2 ]
Gozpinar, A. [1 ]
机构
[1] Ordu Univ, Fac Sci & Arts, Dept Math, Ordu, Turkey
[2] Dongguk Univ, Dept Math, Gyeongju 38066, South Korea
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2021年 / 15卷 / 01期
关键词
Beta function; fractional conformable integral operators; Hermite-Hadamard type inequalities; incomplete beta function; Riemann-Liouville fractional integrals; CONVEX-FUNCTIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Since the so-called Hermite-Hadamard inequality for a convex function was presented, its extensions, refinements, and variants, which are called Hermite-Hadamard type inequalities, have been extensively investigated. In this paper, we aim to establish two Hermite-Hadamard type inequalities and an identity for convex functions associated with known fractional conformable integral operators. Also the results presented here are indicated to reduce to relatively simple known results.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [2] Generalization of Hermite-Hadamard Type Inequalities via Conformable Fractional Integrals
    Khan, Muhammad Adil
    Khurshid, Yousaf
    Du, Ting-Song
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [3] Hermite-Hadamard type inequalities pertaining conformable fractional integrals and their applications
    Iqbal, Arshad
    Khan, Muhammad Adil
    Ullah, Sana
    Chu, Yu Ming
    Kashuri, Artion
    AIP ADVANCES, 2018, 8 (07)
  • [4] Refinements of Hermite-Hadamard Type Inequalities Involving Fractional Integrals
    Wang, JinRong
    Li, Xuezhu
    Zhu, Chun
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (04) : 655 - 666
  • [5] Generalization of Hermite-Hadamard Inequalities Involving Hadamard Fractional Integrals
    Zhang, Zhi
    Wei, Wei
    Wang, JinRong
    FILOMAT, 2015, 29 (07) : 1515 - 1524
  • [6] Conformable Fractional Integrals Versions of Hermite-Hadamard Inequalities and Their Generalizations
    Khan, Muhammad Adil
    Chu, Yu-Ming
    Kashuri, Artion
    Liko, Rozana
    Ali, Gohar
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [7] Hermite–Hadamard type inequalities for conformable fractional integrals
    M. Adil Khan
    T. Ali
    S. S. Dragomir
    M. Z. Sarikaya
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1033 - 1048
  • [8] NEW EXTENSIONS VERSION OF HERMITE-HADAMARD TYPE INEQUALITIES BY MEANS OF CONFORMABLE FRACTIONAL INTEGRALS
    Bas, Umut
    Budak, Huseyin
    Kara, Hasan
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)
  • [9] On the Hermite-Hadamard type inequalities involving generalized integrals
    Valdes, Juan E. Napoles
    CONTRIBUTIONS TO MATHEMATICS, 2022, 5 : 45 - 51
  • [10] HERMITE-HADAMARD TYPE INEQUALITIES FOR KATUGAMPOLA FRACTIONAL INTEGRALS
    Wang, Shu-Hong
    Hai, Xu-Ran
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1650 - 1667