INTERLACINGS FOR RANDOM WALKS ON WEIGHTED GRAPHS AND THE INTERCHANGE PROCESS

被引:12
作者
Dieker, A. B. [1 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch, ISyE, Atlanta, GA 30332 USA
关键词
Aldous's conjecture; interchange process; interlacing; random walk; representation theory; symmetric group;
D O I
10.1137/090775361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Aldous's conjecture that the spectral gap of the interchange process on a weighted undirected graph equals the spectral gap of the random walk on this graph. We present a conjecture in the form of an inequality and prove that this inequality implies Aldous's conjecture by combining an interlacing result for Laplacians of random walks on weighted graphs with representation theory. We prove the conjectured inequality for several important instances. As an application of the developed theory, we prove Aldous's conjecture for a large class of weighted graphs, which includes all wheel graphs, all graphs with four vertices, certain nonplanar graphs, certain graphs with several weighted cycles of arbitrary length, and all trees. Caputo, Liggett, and Richthammer have recently resolved Aldous's conjecture, after independently and simultaneously discovering the key ideas developed in the present paper.
引用
收藏
页码:191 / 206
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1985, Matrix Analysis
[2]  
[Anonymous], 1997, Young Tableaux
[3]  
[Anonymous], 2009, American Mathematical Soc.
[4]  
Butler S, 2007, ELECTRON J LINEAR AL, V16, P90
[5]  
CAPUTO P, 2009, RECURSIVE APPROACH A
[6]  
CAPUTO P, 2009, PROOF ALDOUS SPECTRA
[7]  
CESI F, 2009, EIGENVALUES CAYLEY G
[8]  
Cesi F, 2009, ELECTRON J COMB, V16
[9]   GENERATING A RANDOM PERMUTATION WITH RANDOM TRANSPOSITIONS [J].
DIACONIS, P ;
SHAHSHAHANI, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :159-179
[10]  
Diaconis P., 1988, GROUP REPRESENTATION