Bayesian estimation and inference for log-ACD models

被引:6
作者
Gerlach, Richard [1 ]
Peiris, Shelton [2 ]
Lin, Edward M. H. [3 ]
机构
[1] Univ Sydney, Sch Business, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
关键词
Auto-regressive conditional duration; Weibull; Skewed Student-t; Bayesian; Financial trading; AUTOREGRESSIVE CONDITIONAL DURATION;
D O I
10.1007/s00180-015-0576-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper adapts Bayesian Markov chain Monte Carlo methods for application to some auto-regressive conditional duration models. Subsequently, the properties of these estimators are examined and assessed across a range of possible conditional error distributions and dynamic specifications, including under error mis-specification. A novel model error distribution, employing a truncated skewed Student-t distribution is proposed and the Bayesian estimator assessed for it. The results of an extensive simulation study reveal that favourable estimation properties are achieved under a range of possible error distributions, but that the generalised gamma distribution assumption is most robust and best preserves these properties, including when it is incorrectly specified. The results indicate that the powerful numerical methods underlying the Bayesian estimator allow more efficiency than the (quasi-) maximum likelihood estimator for the cases considered.
引用
收藏
页码:25 / 48
页数:24
相关论文
共 21 条
[1]   Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks [J].
Allen, David ;
Chan, Felix ;
McAleer, Michael ;
Peiris, Shelton .
JOURNAL OF ECONOMETRICS, 2008, 147 (01) :163-185
[2]  
[Anonymous], 1997, Journal of Empirical Finance
[3]   A comparison of financial duration models via density forecasts [J].
Bauwens, L ;
Giot, P ;
Grammig, J ;
Veredas, D .
INTERNATIONAL JOURNAL OF FORECASTING, 2004, 20 (04) :589-609
[4]   The stochastic conditional duration model: a latent variable model for the analysis of financial durations [J].
Bauwens, L ;
Veredas, D .
JOURNAL OF ECONOMETRICS, 2004, 119 (02) :381-412
[5]  
Bauwens L., 2000, Annales d'economie et de Statistique, V60, P117, DOI [DOI 10.2307/20076257, 10.2307/20076257]
[6]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[8]   Volatility forecasting using threshold heteroskedastic models of the intra-day range [J].
Chen, Cathy W. S. ;
Gerlach, Richard ;
Lin, Edward M. H. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (06) :2990-3010
[9]   Semiparametric duration models [J].
Drost, FC ;
Werker, BJM .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2004, 22 (01) :40-50
[10]   Autoregressive conditional duration: A new model for irregularly spaced transaction data [J].
Engle, RF ;
Russell, JR .
ECONOMETRICA, 1998, 66 (05) :1127-1162