In-flow detection of ultra-small magnetic particles by an integrated giant magnetic impedance sensor

被引:30
作者
Fodil, K. [1 ]
Denoual, M. [2 ]
Dolabdjian, C. [1 ]
Treizebre, A. [3 ]
Senez, V. [3 ]
机构
[1] Normandie Univ, CNRS, GREYC, UMR 6072, F-14000 Caen, France
[2] Ecole Natl Super Ingenieurs Caen, GREYC, UMR 6072, F-14000 Caen, France
[3] Univ Lille, CNRS, ISEN, UMR 8520,IEMN, F-59000 Lille, France
关键词
CIRCULATING TUMOR-CELLS; IRON-OXIDE NANOPARTICLES; SPIN-VALVE SENSORS; CANCER-PATIENTS; CHIP; BLOOD; CYTOMETRY; SYSTEM; SEPARATION; ONCOLOGY;
D O I
10.1063/1.4948286
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have designed and fabricated a microfluidic system made of glass and polydimethylsiloxane. A micro-magnetometer has been integrated to the system. This sensor is made of a giant magneto-impedance wire known to have very high magnetic sensitivity at room temperature. A liquid-liquid segmented multiphase flow was generated in the channel using a Y-shaped inlet junction. The dispersed phase plugs contained superparamagnetic iron oxide (20 nm) nanoparticles at a molar concentration of 230 mmol/l. We have shown both theoretically and experimentally that in-flow detection of these nanoparticles is performed by the microsystem for concentration as small as 5.47 x 10(-9) mol. These performances show that it is conceivable to use this system for ex-vivo analysis of blood samples where superparamagnetic iron oxide nanoparticles, initially used as magnetic contrast agents, could be functionalized for biomarkers fishing. It opens new perspectives in the context of personalized medicine. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 59 条
[1]  
Baiu DC, 2013, CURR PHARM DESIGN, V19, P6606
[2]   Enhanced cellular uptake and long-term retention of chitosan-modified iron-oxide nanoparticles for MRI-based cell tracking [J].
Bakhru, Sasha H. ;
Altiok, Eda ;
Highley, Christopher ;
Delubac, Daniel ;
Suhan, Joseph ;
Hitchens, T. Kevin ;
Ho, Chien ;
Zappe, Stefan .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2012, 7 :4613-4623
[3]   Microfluidic multiplexed partitioning enables flexible and effective utilization of magnetic sensor arrays [J].
Bechstein, Daniel J. B. ;
Ng, Elaine ;
Lee, Jung-Rok ;
Cone, Stephanie G. ;
Gaster, Richard S. ;
Osterfeld, Sebastian J. ;
Hall, Drew A. ;
Weaver, James A. ;
Wilson, Robert J. ;
Wang, Shan X. .
LAB ON A CHIP, 2015, 15 (22) :4273-4276
[4]   Antibody-based proteomics: fast-tracking molecular diagnostics in oncology [J].
Brennan, Donal J. ;
O'Connor, Darran P. ;
Rexhepaj, Elton ;
Ponten, Fredrik ;
Gallagher, William M. .
NATURE REVIEWS CANCER, 2010, 10 (09) :605-617
[5]   Magnetic GMI sensor for detection of biomolecules [J].
Chiriac, H ;
Tibu, M ;
Moga, AE ;
Herea, DD .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :671-676
[6]   Multifunctional nanoparticles for use in theranostic applications [J].
Cole, James T. ;
Holland, Nolan B. .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2015, 5 (03) :295-309
[7]   A microdevice for rapid optical detection of magnetically captured rare blood pathogens [J].
Cooper, Ryan M. ;
Leslie, Daniel C. ;
Domansky, Karel ;
Jain, Abhishek ;
Yung, Chong ;
Cho, Michael ;
Workman, Sam ;
Super, Michael ;
Ingber, Donald E. .
LAB ON A CHIP, 2014, 14 (01) :182-188
[8]   Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors [J].
Dessimoz, Anne-Laure ;
Cavin, Laurent ;
Renken, Albert ;
Kiwi-Minsker, Lioubov .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (16) :4035-4044
[9]   A novel approach for detection and quantification of magnetic nanomarkers using a spin valve GMR-integrated microfluidic sensor [J].
Devkota, J. ;
Kokkinis, G. ;
Berris, T. ;
Jamalieh, M. ;
Cardoso, S. ;
Cardoso, F. ;
Srikanth, H. ;
Phan, M. H. ;
Giouroudi, I. .
RSC ADVANCES, 2015, 5 (63) :51169-51175
[10]   A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides [J].
Dias, A. M. G. C. ;
Hussain, A. ;
Marcos, A. S. ;
Roque, A. C. A. .
BIOTECHNOLOGY ADVANCES, 2011, 29 (01) :142-155