NEW BOUNDS FOR SHANNON, RELATIVE AND MANDELBROT ENTROPIES VIA ABEL-GONTSCHAROFF INTERPOLATING POLYNOMIAL

被引:10
作者
Butt, Saad Ihsan [1 ]
Mehmood, Nasir [1 ]
Pecaric, Dilda [2 ]
Pecaric, Josip [3 ]
机构
[1] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[2] Catholic Univ Croatia, Ilica 242, Zagreb, Croatia
[3] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2019年 / 22卷 / 04期
关键词
n-convex function; Abel-Gontscharoff interpolating polynomial; new Green functions; Shannon entropy; relative entropy; Zipf-Mandelbrot entropy; POPOVICIU-TYPE INEQUALITIES; CONVEX-FUNCTIONS;
D O I
10.7153/mia-2019-22-88
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Jensen's inequality has tremendous implications in many fields of modern analysis. It helps computing useful upper bounds for several entropic measures used in information theory. We use discrete and continuous cyclic refinements of Jensen's inequality and extend them from convex to higher order convex function by using new Green functions and Abel-Gontschamff interpolating polynomial. As an application of our work, we establish connection among new entropic bounds for Shanon, Relative and Mandelbrot entropies.
引用
收藏
页码:1283 / 1301
页数:19
相关论文
共 26 条
  • [1] Agarwal R. P., 1993, Error Inequalities in Polynomial Interpolation and Their Applications
  • [2] REFINEMENT OF JENSEN'S INEQUALITY WITH APPLICATIONS TO CYCLIC MIXED SYMMETRIC MEANS AND CAUCHY MEANS
    Brnetic, Ilko
    Khan, Khuram Ali
    Pecaric, Josip
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (04): : 1309 - 1321
  • [3] Butt S.I., 2016, POPOVICIUS INEQUALIT
  • [4] Generalization of Popoviciu-Type Inequalities Via Fink's Identity
    Butt, Saad Ihsan
    Pecaric, Josip
    Vukelic, Ana
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1495 - 1511
  • [5] POPOVICIU TYPE INEQUALITIES VIA GREEN FUNCTION AND GENERALIZED MONTGOMERY IDENTITY
    Butt, Saad Ihsan
    Khan, Khuram Ali
    Pecaric, Josip
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1519 - 1538
  • [6] SOME NEW OSTROWSKI-TYPE BOUNDS FOR THE CEBYSEV FUNCTIONAL AND APPLICATIONS
    Cerone, P.
    Dragomir, S. S.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01): : 159 - 170
  • [7] Csiszar I., 1967, Studia Sci. Math. Hung., V2, P229
  • [8] Davis P. J., 1961, Interpolation and Approximation
  • [9] Gontscharoff V. L., 1954, Theory of Interpolation and Approximation of Functions
  • [10] HORVATH JC, 2014, MONOGRAPHS INEQUALIT, V8, DOI DOI 10.3389/FNSYS.2014.00002