Gene networks and pathways for plasma lipid traits via multitissue multiomics systems analysis

被引:8
作者
Blencowe, Montgomery [1 ,2 ]
Ahn, In Sook [1 ]
Saleem, Zara [1 ]
Luk, Helen [1 ]
Cely, Ingrid [1 ]
Makinen, Ville-Petteri [1 ,3 ]
Zhao, Yuqi [1 ]
Yang, Xia [1 ,2 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Mol Cellular & Integrat Physiol Interdept Program, Los Angeles, CA 90095 USA
[3] South Australian Hlth & Med Res Inst, Adelaide, SA, Australia
[4] Univ Calif Los Angeles, Interdept Program Bioinformat, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
lipid metabolism; integrative genomics; GWAS; pathway and network analysis; coagulation factor II; GENOME-WIDE ASSOCIATION; DENSITY-LIPOPROTEIN CHOLESTEROL; INSULIN-RESISTANCE; EXPRESSION; DISEASE; LOCI; SERUM; RISK; ARCHITECTURE; INTEGRATION;
D O I
10.1194/jlr.RA120000713
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide association studies (GWASs) have implicated similar to 380 genetic loci for plasma lipid regulation. However, these loci only explain 17-27% of the trait variance, and a comprehensive understanding of the molecular mechanisms has not been achieved. In this study, we utilized an integrative genomics approach leveraging diverse genomic data from human populations to investigate whether genetic variants associated with various plasma lipid traits, namely, total cholesterol, high and low density lipoprotein cholesterol (HDL and LDL), and triglycerides, from GWASs were concentrated on specific parts of tissue-specific gene regulatory networks. In addition to the expected lipid metabolism pathways, gene subnetworks involved in "interferon signaling," "autoimmune/immune activation," "visual transduction," and "protein catabolism" were significantly associated with all lipid traits. In addition, we detected trait-specific subnetworks, including cadherin-associated subnetworks for LDL; glutathione metabolism for HDL; valine, leucine, and isoleucine biosynthesis for total cholesterol; and insulin signaling and complement pathways for triglyceride. Finally, by using gene-gene relations revealed by tissue-specific gene regulatory networks, we detected both known (e.g., APOH, APOA4, and ABCA1) and novel (e.g., F2 in adipose tissue) key regulator genes in these lipid-associated subnetworks. Knockdown of the F2 gene (coagulation factor II, thrombin) in 3T3-L1 and C3H10T1/2 adipocytes altered gene expression of Abcb11, Apoa5, Apof, Fabp1, Lipc, and Cd36; reduced intracellular adipocyte lipid content; and increased extracellular lipid content, supporting a link between adipose thrombin and lipid regulation. Our results shed light on the complex mechanisms underlying lipid metabolism and highlight potential novel targets for lipid regulation and lipid-associated diseases.
引用
收藏
页数:16
相关论文
共 84 条
[1]   PLASMA TRIGLYCERIDE AND CORONARY HEART-DISEASE [J].
AUSTIN, MA .
ARTERIOSCLEROSIS AND THROMBOSIS, 1991, 11 (01) :2-14
[2]   Pathway and network-based analysis of genome-wide association studies in multiple sclerosis [J].
Baranzini, Sergio E. ;
Galwey, Nicholas W. ;
Wang, Joanne ;
Khankhanian, Pouya ;
Lindberg, Raija ;
Pelletier, Daniel ;
Wu, Wen ;
Uitdehaag, Bernard M. J. ;
Kappos, Ludwig ;
Polman, Chris H. ;
Matthews, Paul M. ;
Hauser, Stephen L. ;
Gibson, Rachel A. ;
Oksenberg, Jorge R. ;
Barnes, Michael R. .
HUMAN MOLECULAR GENETICS, 2009, 18 (11) :2078-2090
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Network Modeling Approaches and Applications to Unravelling Non-Alcoholic Fatty Liver Disease [J].
Blencowe, Montgomery ;
Karunanayake, Tilan ;
Wier, Julian ;
Hsu, Neil ;
Yang, Xia .
GENES, 2019, 10 (12)
[5]   Annotation of functional variation in personal genomes using RegulomeDB [J].
Boyle, Alan P. ;
Hong, Eurie L. ;
Hariharan, Manoj ;
Cheng, Yong ;
Schaub, Marc A. ;
Kasowski, Maya ;
Karczewski, Konrad J. ;
Park, Julie ;
Hitz, Benjamin C. ;
Weng, Shuai ;
Cherry, J. Michael ;
Snyder, Michael .
GENOME RESEARCH, 2012, 22 (09) :1790-1797
[6]   Integrative genomic analysis identified common regulatory networks underlying the correlation between coronary artery disease and plasma lipid levels [J].
Chen, Liuying ;
Yao, Yinghao ;
Jin, Chaolun ;
Wu, Shen ;
Liu, Qiang ;
Li, Jingjing ;
Ma, Yunlong ;
Xu, Yizhou ;
Zhong, Yigang .
BMC CARDIOVASCULAR DISORDERS, 2019, 19 (01)
[7]   Identification of Genes and Networks Driving Cardiovascular and Metabolic Phenotypes in a Mouse F2 Intercross [J].
Derry, Jonathan M. J. ;
Zhong, Hua ;
Molony, Cliona ;
MacNeil, Doug ;
Guhathakurta, Debraj ;
Zhang, Bin ;
Mudgett, John ;
Small, Kersten ;
El Fertak, Lahcen ;
Guimond, Alain ;
Selloum, Mohammed ;
Zhao, Wenqing ;
Champy, Marie France ;
Monassier, Laurent ;
Vogt, Tom ;
Cully, Doris ;
Kasarskis, Andrew ;
Schadt, Eric E. .
PLOS ONE, 2010, 5 (12)
[8]   Linking lipids to Alzheimer's disease: cholesterol and beyond [J].
Di Paolo, Gilbert ;
Kim, Tae-Wan .
NATURE REVIEWS NEUROSCIENCE, 2011, 12 (05) :284-296
[9]   Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice [J].
Diamante, Graciel ;
Cely, Ingrid ;
Zamora, Zacary ;
Ding, Jessica ;
Blencowe, Montgomery ;
Lang, Jennifer ;
Bline, Abigail ;
Singh, Maya ;
Lusis, Aldons J. ;
Yang, Xia .
ENVIRONMENT INTERNATIONAL, 2021, 146
[10]   Common Regulatory Variation Impacts Gene Expression in a Cell Type-Dependent Manner [J].
Dimas, Antigone S. ;
Deutsch, Samuel ;
Stranger, Barbara E. ;
Montgomery, Stephen B. ;
Borel, Christelle ;
Attar-Cohen, Homa ;
Ingle, Catherine ;
Beazley, Claude ;
Arcelus, Maria Gutierrez ;
Sekowska, Magdalena ;
Gagnebin, Marilyne ;
Nisbett, James ;
Deloukas, Panos ;
Dermitzakis, Emmanouil T. ;
Antonarakis, Stylianos E. .
SCIENCE, 2009, 325 (5945) :1246-1250