Molecular interference of Cd2+ with Photosystem II

被引:136
作者
Sigfridsson, KGV [1 ]
Bernát, G [1 ]
Mamedov, F [1 ]
Styring, S [1 ]
机构
[1] Lund Univ, Ctr Chem & Chem Engn, Dept Biochem, S-22100 Lund, Sweden
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2004年 / 1659卷 / 01期
关键词
cadmium; calcium; DCMU; EPR; fluorescence; Photosystem II;
D O I
10.1016/j.bbabio.2004.07.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many heavy metals inhibit electron transfer reactions in Photosystem II (PSII). Cd2+ is known to exchange, with high affinity in a slow reaction, for the Ca2+ cofactor in the Ca/Mn cluster that constitutes the oxygen-evolving center. This results in inhibition of photosynthetic oxygen evolution. There are also indications that Cd2+ binds to other sites in PSII, potentially to proton channels in analogy to heavy metal binding in photosynthetic reaction centers from purple bacteria. In search for the effects of Cd2+-binding to those sites, we have studied how Cd2+ affects electron transfer reactions in PSII after short incubation times and in sites, which interact with Cd2+ with low affinity. Overall electron transfer and partial electron transfer were studied by a combination of EPR spectroscopy of individual redox components, flash-induced variable fluorescence and steady state oxygen evolution measurements. Several effects of Cd2+ were observed: (i) the amplitude of the flash-induced variable fluorescence was lost indicating that electron transfer from Y-Z to P-680(+) was inhibited; (ii) Q(A)(-) to Q(B) electron transfer was slowed down; (iii) the S-2 state multiline EPR signal was not observable; (iv) steady state oxygen evolution was inhibited in both a high-affinity and a low-affinity site; (v) the spectral shape of the EPR signal from Q(A)(-)Fe(2+) was modified but its amplitude was not sensitive to the presence of Cd2+. In addition, the presence of both Ca2+ and DCMU abolished Cd2+-induced effects partially and in different sites. The number of sites for Cd2+ binding and the possible nature of these sites are discussed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 31
页数:13
相关论文
共 59 条
[1]   CA2+ DEPLETION MODIFIES THE ELECTRON-TRANSFER ON BOTH DONOR AND ACCEPTOR SIDES IN PHOTOSYSTEM-II FROM SPINACH [J].
ANDREASSON, LE ;
VASS, I ;
STYRING, S .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1995, 1230 (03) :155-164
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]   Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers [J].
Axelrod, HL ;
Abresch, EC ;
Paddock, ML ;
Okamura, MY ;
Feher, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1542-1547
[4]   Photosystem II: the engine of life [J].
Barber, J .
QUARTERLY REVIEWS OF BIOPHYSICS, 2003, 36 (01) :71-89
[5]  
BAZZAZ MB, 1974, ENVIRON LETT, V6, P1
[6]   A HIGHLY RESOLVED, OXYGEN-EVOLVING PHOTOSYSTEM-II PREPARATION FROM SPINACH THYLAKOID MEMBRANES - ELECTRON-PARAMAGNETIC-RES AND ELECTRON-TRANSPORT PROPERTIES [J].
BERTHOLD, DA ;
BABCOCK, GT ;
YOCUM, CF .
FEBS LETTERS, 1981, 134 (02) :231-234
[7]   INHIBITION OF TYROSINE-Z PHOTOOXIDATION AFTER FORMATION OF THE S3 STATE IN CA2+-DEPLETED AND (CL-)-DEPLETED PHOTOSYSTEM-II [J].
BOUSSAC, A ;
SETIF, P ;
RUTHERFORD, AW .
BIOCHEMISTRY, 1992, 31 (04) :1224-1234
[8]   THE EFFECT OF TEMPERATURE ON THE FORMATION AND DECAY OF THE MULTILINE ELECTRON-PARAMAGNETIC-RES SIGNAL SPECIES ASSOCIATED WITH PHOTOSYNTHETIC OXYGEN EVOLUTION [J].
BRUDVIG, GW ;
CASEY, JL ;
SAUER, K .
BIOCHIMICA ET BIOPHYSICA ACTA, 1983, 723 (03) :366-371
[9]   Inhibition of oxygen evolution in Photosystem II by Cu(II) ions is associated with oxidation of cytochrome b559 [J].
Burda, K ;
Kruk, J ;
Schmid, GH ;
Strzalka, K .
BIOCHEMICAL JOURNAL, 2003, 371 :597-601
[10]   The 23 and 17 kDa extrinsic proteins of photosystem II modulate the magnetic properties of the S1-state manganese cluster [J].
Campbell, KA ;
Gregor, W ;
Pham, DP ;
Peloquin, JM ;
Debus, RJ ;
Britt, RD .
BIOCHEMISTRY, 1998, 37 (15) :5039-5045