Nearly Optimal Static Las Vegas Succinct Dictionary

被引:6
作者
Yu, Huacheng [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
来源
PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20) | 2020年
关键词
dictionary; succinct data structure; las vegas algorithm; locally decodable source coding; PROBE LOWER BOUNDS; TABLES;
D O I
10.1145/3357713.3384274
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set S of n (distinct) keys from key space [U], each associated with a value from Sigma, the static dictionary problem asks to preprocess these (key, value) pairs into a data structure, supporting value retrieval queries: for any given x is an element of [U], valRet(x) must return the value associated with x if x is an element of S, or return perpendicular to if x is not an element of S. The special case where vertical bar Sigma vertical bar = 1 is called the membership problem. The "textbook" solution is to use a hash table, which occupies linear space and answers each query in constant time. On the other hand, the minimum possible space to encode all (key, value) pairs is only OPT := inverted right perendicularlg(2)((U)(n)) + n lg(2) Sigma vertical bar inverted left perendicular bits, which could be much less. In this paper, we design a randomized dictionary data structure using OPT + poly lg n + O(1g lg lg lg lg U) bits of space, and it has expected constant query time, assuming the query algorithm can access an external lookup table of size n(0.001). The lookup table depends only on U, n and vertical bar Sigma vertical bar, and not the input. Previously, even for membership queries and U <= n(O(1)) the best known data structure with constant query time requires OPT + n/poly lg n bits of space by Pagh (SIAM J. Comput. 2001) and PatraKu (FOCS 2008); the best known using OPT + n0.999 space has query time O(lg n); the only known non-trivial data structure with OPT+ n(0.0001) space has O(lg n) query time and requires a lookup table of size >= n(2.99) (!). Our new data structure answers open questions by PatraKu and Thorup.
引用
收藏
页码:1389 / 1401
页数:13
相关论文
共 27 条
  • [1] Bringmann K, 2013, STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, P775
  • [2] Membership in constant time and almost-minimum space
    Brodnik, A
    Munro, JI
    [J]. SIAM JOURNAL ON COMPUTING, 1999, 28 (05) : 1627 - 1640
  • [3] Are bitvectors optimal?
    Buhrman, H
    Miltersen, PB
    Radhakrishnan, J
    Venkatesh, S
    [J]. SIAM JOURNAL ON COMPUTING, 2002, 31 (06) : 1723 - 1744
  • [4] CARTER JL, 1979, J COMPUT SYST SCI, V18, P143, DOI 10.1016/0022-0000(79)90044-8
  • [5] Dodis Y, 2010, ACM S THEORY COMPUT, P593
  • [6] IMPLICIT O(1) PROBE SEARCH
    FIAT, A
    NAOR, M
    [J]. SIAM JOURNAL ON COMPUTING, 1993, 22 (01) : 1 - 10
  • [7] NONOBLIVIOUS HASHING
    FIAT, A
    NAOR, M
    SCHMIDT, JP
    SIEGEL, A
    [J]. JOURNAL OF THE ACM, 1992, 39 (04) : 764 - 782
  • [8] Fich F, 1995, LECT NOTES COMPUT SC, V955, P482
  • [9] STORING A SPARSE TABLE WITH O(1) WORST CASE ACCESS TIME
    FREDMAN, ML
    KOMLOS, J
    SZEMEREDI, E
    [J]. JOURNAL OF THE ACM, 1984, 31 (03) : 538 - 544
  • [10] Grossi Roberto, 2009, P 26 INT S THEOR ASP, P517, DOI 10.4230/LIPIcs.STACS