Automatic Glomerulus Detection in Renal Histological Images

被引:9
作者
Cardozo Rehem, Jonathan Moreira [1 ]
Conrado dos Santos, Washington Luis [2 ]
Duarte, Angelo A. [1 ]
de Oliveira, Luciano R. [3 ]
Angelo, Michele F. [1 ]
机构
[1] Univ Estadual Feira de Santana UEFS, Feira De Santana, BA, Brazil
[2] Fundacao Oswaldo Cruz CpqGM FIOCRUZ, Ctr Pesquisas Goncalo Muniz, Salvador, BA, Brazil
[3] Univ Fed Bahia UFBA, IVISION Lab, Salvador, BA, Brazil
来源
MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY | 2021年 / 11603卷
关键词
Glomerulus; Object Detection; Deep Learning; Computational Pathology;
D O I
10.1117/12.2582201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Glomeruli are microscopic structures of the kidney affected in many renal diseases. The diagnosis of these diseases depends on the study by a pathologist of each glomerulus sampled by renal biopsy. To help pathologists with the image analysis, we propose a glomerulus detection method on renal histological images. For that, we evaluated two state-of-the-art deep-learning techniques: single shot multibox detector with Inception V2 (SI2) and faster region-based convolutional neural network with Inception V2 (FRI2). As a result, we reached: 0.88 of mAP and 0.94 of F1-score, when using SI2, and 0.87 of mAP and 0.97 of F1-score, when using FRI2. On average, to process each image, FRI2 required 30.91s, while SI2 just 0.79s. In our experiments, we found that SI2 model is the best detection method for our task since it is 64% faster in the training stage and 98% faster to detect the glomeruli in each image.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2012, SIGNAL IMAGE PROCESS
[3]  
[Anonymous], SPEED ACCURACY TRADE
[4]  
Barros G. O., 2015, SIBGRAPI 2015
[5]   PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys [J].
Barros, George O. ;
Navarro, Brenda ;
Duarte, Angelo ;
dos-Santos, Washington L. C. .
SCIENTIFIC REPORTS, 2017, 7
[6]   Classification of glomerular hypercellularity using convolutional features and support vector machine [J].
Chagas, Paulo ;
Souza, Luiz ;
Araujo, Ikaro ;
Aldeman, Nayze ;
Duarte, Angelo ;
Angelo, Michele ;
dos-Santos, Washington L. C. ;
Oliveira, Luciano .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 103
[7]  
de Araujo I.C., 2017, 13 BRAZILIAN C COMPU, P12
[8]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[9]   Glomerulus Classification and Detection Based on Convolutional Neural Networks [J].
Gallego, Jaime ;
Pedraza, Anibal ;
Lopez, Samuel ;
Steiner, Georg ;
Gonzalez, Lucia ;
Laurinavicius, Arvydas ;
Bueno, Gloria .
JOURNAL OF IMAGING, 2018, 4 (01)
[10]   Support vector machines [J].
Hearst, MA .
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (04) :18-21