Automatic Glomerulus Detection in Renal Histological Images

被引:9
作者
Cardozo Rehem, Jonathan Moreira [1 ]
Conrado dos Santos, Washington Luis [2 ]
Duarte, Angelo A. [1 ]
de Oliveira, Luciano R. [3 ]
Angelo, Michele F. [1 ]
机构
[1] Univ Estadual Feira de Santana UEFS, Feira De Santana, BA, Brazil
[2] Fundacao Oswaldo Cruz CpqGM FIOCRUZ, Ctr Pesquisas Goncalo Muniz, Salvador, BA, Brazil
[3] Univ Fed Bahia UFBA, IVISION Lab, Salvador, BA, Brazil
来源
MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY | 2021年 / 11603卷
关键词
Glomerulus; Object Detection; Deep Learning; Computational Pathology;
D O I
10.1117/12.2582201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Glomeruli are microscopic structures of the kidney affected in many renal diseases. The diagnosis of these diseases depends on the study by a pathologist of each glomerulus sampled by renal biopsy. To help pathologists with the image analysis, we propose a glomerulus detection method on renal histological images. For that, we evaluated two state-of-the-art deep-learning techniques: single shot multibox detector with Inception V2 (SI2) and faster region-based convolutional neural network with Inception V2 (FRI2). As a result, we reached: 0.88 of mAP and 0.94 of F1-score, when using SI2, and 0.87 of mAP and 0.97 of F1-score, when using FRI2. On average, to process each image, FRI2 required 30.91s, while SI2 just 0.79s. In our experiments, we found that SI2 model is the best detection method for our task since it is 64% faster in the training stage and 98% faster to detect the glomeruli in each image.
引用
收藏
页数:11
相关论文
共 27 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Anguelov D, 2015, ABS14094842 CORR
  • [3] [Anonymous], SPEED ACCURACY TRADE
  • [4] Araujo IC, 2017, 13 BRAZILIAN C COMPU, P12
  • [5] Barros G. O., 2015, SIBGRAPI 2015
  • [6] PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys
    Barros, George O.
    Navarro, Brenda
    Duarte, Angelo
    dos-Santos, Washington L. C.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [7] Belsare A., 2012, SIGNAL IMAGE PROCESS, V4, P23, DOI DOI 10.5121/SIPIJ.2012.3403
  • [8] Classification of glomerular hypercellularity using convolutional features and support vector machine
    Chagas, Paulo
    Souza, Luiz
    Araujo, Ikaro
    Aldeman, Nayze
    Duarte, Angelo
    Angelo, Michele
    dos-Santos, Washington L. C.
    Oliveira, Luciano
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 103
  • [9] The PASCAL Visual Object Classes Challenge: A Retrospective
    Everingham, Mark
    Eslami, S. M. Ali
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) : 98 - 136
  • [10] Glomerulus Classification and Detection Based on Convolutional Neural Networks
    Gallego, Jaime
    Pedraza, Anibal
    Lopez, Samuel
    Steiner, Georg
    Gonzalez, Lucia
    Laurinavicius, Arvydas
    Bueno, Gloria
    [J]. JOURNAL OF IMAGING, 2018, 4 (01)