Ginsparg-Wilson relation, topological invariants, and finite noncommutative geometry

被引:45
作者
Aoki, H [1 ]
Iso, S
Nagao, K
机构
[1] Saga Univ, Dept Phys, Saga 8408502, Japan
[2] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan
关键词
D O I
10.1103/PhysRevD.67.085005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the Ginsparg-Wilson (GW) relation can play an important role in defining chiral structures in finite noncommutative geometries. Employing the GW relation, we can prove the index theorem and construct topological invariants even if the system has only finite degrees of freedom. As an example, we consider a gauge theory on a fuzzy two-sphere and give an explicit construction of a noncommutative analogue of the GW relation, chirality operator, and the index theorem. The topological invariant is shown to coincide with the first Chern class in the commutative limit.
引用
收藏
页数:5
相关论文
共 50 条
[1]   Chiral anomaly on a fuzzy 2-sphere [J].
Aoki, H ;
Iso, S ;
Nagao, K .
PHYSICAL REVIEW D, 2003, 67 (06)
[2]   Space-time structures from IIB matrix model [J].
Aoki, H ;
Iso, S ;
Kawai, H ;
Kitazawa, Y ;
Tada, T .
PROGRESS OF THEORETICAL PHYSICS, 1998, 99 (05) :713-745
[3]   Non-commutative Yang-Mills in IIB matrix model [J].
Aoki, H ;
Ishibashi, N ;
Iso, S ;
Kawai, H ;
Kitazawa, Y ;
Tada, T .
NUCLEAR PHYSICS B, 2000, 565 (1-2) :176-192
[4]   Orbifold matrix model [J].
Aoki, H ;
Iso, S ;
Suyama, T .
NUCLEAR PHYSICS B, 2002, 634 (1-2) :71-89
[5]  
AOKI H, UNPUB
[6]   Anomaly and nonplanar diagrams in noncommutative gauge theories [J].
Ardalan, F ;
Sadooghi, N .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (01) :123-144
[7]   Axial anomaly in noncommutative QED on R4 [J].
Ardalan, F ;
Sadooghi, N .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (18) :3151-3177
[8]  
Armoni A, 2002, J HIGH ENERGY PHYS
[9]   Monopoles and solitons in fuzzy physics [J].
Baez, S ;
Balachandran, AP ;
Vaidya, S ;
Ydri, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 208 (03) :787-798
[10]   The fermion doubling problem and noncommutative geometry [J].
Balachandran, AP ;
Govindarajan, TR ;
Ydri, B .
MODERN PHYSICS LETTERS A, 2000, 15 (19) :1279-1286