Double-Quantum-Well AlGaN/GaN Field Effect Transistors with Top and Back Gates: Electrical and Noise Characteristics

被引:4
作者
Dub, Maksym [1 ,2 ,3 ]
Sai, Pavlo [1 ,3 ]
Sakowicz, Maciej [2 ]
Janicki, Lukasz [4 ]
But, Dmytro B. [1 ,3 ,5 ]
Prystawko, Pawel [2 ]
Cywinski, Grzegorz [1 ,5 ]
Knap, Wojciech [1 ,5 ,6 ,7 ]
Rumyantsev, Sergey [1 ]
机构
[1] Inst High Pressure Phys PAS, Ctr Terahertz Res & Applicat CENTERA Labs, Ul Sokolowska 29-37, PL-01142 Warsaw, Poland
[2] Inst High Pressure Phys PAS, Ul Sokolowska 29-37, PL-01142 Warsaw, Poland
[3] Natl Acad Sci Ukraine, VE Lashkaryov Inst Semicond Phys, 41 Pr Nauki, UA-03680 Kiev, Ukraine
[4] Wroclaw Univ Sci & Technol, Dept Semicond Mat Engn, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[5] Warsaw Univ Technol, Ctr Zaawansowanych Mat & Technol CEZAMAT, PL-02822 Warsaw, Poland
[6] Univ Montpellier, Lab Charles Coulomb, F-34950 Montpellier, France
[7] CNRS UMR 5221, F-34950 Montpellier, France
关键词
AlGaN; GaN; quantum wells; grating gate; high electron mobility transistors; LOW-FREQUENCY NOISE; MOBILITY TRANSISTORS; HEMTS; DENSITY;
D O I
10.3390/mi12060721
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
AlGaN/GaN fin-shaped and large-area grating gate transistors with two layers of two-dimensional electron gas and a back gate were fabricated and studied experimentally. The back gate allowed reducing the subthreshold leakage current, improving the subthreshold slope and adjusting the threshold voltage. At a certain back gate voltage, transistors operated as normally-off devices. Grating gate transistors with a high gate area demonstrated little subthreshold leakage current, which could be further reduced by the back gate. The low frequency noise measurements indicated identical noise properties and the same trap density responsible for noise when the transistors were controlled by either top or back gates. This result was explained by the tunneling of electrons to the traps in AlGaN as the main noise mechanism. The trap density extracted from the noise measurements was similar or less than that reported in the majority of publications on regular AlGaN/GaN transistors.
引用
收藏
页数:11
相关论文
共 44 条
[21]   HIGH ELECTRON-MOBILITY GAN/ALXGA1-XN HETEROSTRUCTURES GROWN BY LOW-PRESSURE METALORGANIC CHEMICAL VAPOR-DEPOSITION [J].
KHAN, MA ;
VANHOVE, JM ;
KUZNIA, JN ;
OLSON, DT .
APPLIED PHYSICS LETTERS, 1991, 58 (21) :2408-2410
[22]  
KHAN MA, 1993, APPL PHYS LETT, V63, P1214, DOI 10.1063/1.109775
[23]  
Kuzmik J., 2012, IEEE ELECT DEVICE LE, V33
[24]   AlGaN/GaN High Electron Mobility Transistors with a p-GaN Backgate Structure [J].
Lin, W. T. ;
Lin, W. C. ;
Zhong, Y. N. ;
Hsin, Y. M. .
WIDE BANDGAP SEMICONDUCTOR MATERIALS AND DEVICES 19, 2018, 85 (07) :49-52
[25]  
Lin WT, 2018, MRS ADV, V3, P137, DOI 10.1557/adv.2017.619
[26]   Transport characteristics of AlGaN/GaN/AlGaN double heterostructures with high electron mobility [J].
Meng, Fanna ;
Zhang, Jincheng ;
Zhou, Hao ;
Ma, Juncai ;
Xue, Junshuai ;
Dang, Lisha ;
Zhang, Linxia ;
Lu, Ming ;
Ai, Shan ;
Li, Xiaogang ;
Hao, Yue .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (02)
[27]   Low-Frequency Noise Characterization of AlGaN&x002F;GaN HEMTs and MIS-HEMTs Under UV Illumination [J].
Nagarajan, Venkatesan ;
Chen, Kun-Ming ;
Lin, Hsin-Yi ;
Hu, Hsin-Hui ;
Huang, Guo-Wei ;
Lin, Chuang-Ju ;
Chen, Bo-Yuan ;
Anandan, Deepak ;
Singh, Sankalp Kumar ;
Wu, Chai-Hsun ;
Chang, Edward Yi .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2020, 19 :405-409
[28]  
Nahhas AM., 2019, American Journal of Nanomaterials, V7, P10, DOI 10.12691/ajn-7-1-2
[29]   Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors [J].
Peralta, XG ;
Allen, SJ ;
Wanke, MC ;
Harff, NE ;
Simmons, JA ;
Lilly, MP ;
Reno, JL ;
Burke, PJ ;
Eisenstein, JP .
APPLIED PHYSICS LETTERS, 2002, 81 (09) :1627-1629
[30]   Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell [J].
Popov, V. V. ;
Fateev, D. V. ;
Otsuji, T. ;
Meziani, Y. M. ;
Coquillat, D. ;
Knap, W. .
APPLIED PHYSICS LETTERS, 2011, 99 (24)