Aerosol optical depth retrievals at the Izana Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

被引:21
作者
Garcia, R. D. [1 ,2 ]
Garcia, O. E. [1 ]
Cuevas, E. [1 ]
Cachorro, V. E. [2 ]
Barreto, A. [1 ,3 ]
Guirado-Fuentes, C. [1 ,2 ]
Kouremeti, N. [4 ]
Bustos, J. J. [1 ]
Romero-Campos, P. M. [1 ]
de Frutos, A. M. [2 ]
机构
[1] Agencia Estatal Meteorol AEMET, Izana Atmospher Res Ctr IARC, Santa Cruz De Tenerife, Spain
[2] Univ Valladolid, Atmospher Opt Grp, Valladolid, Spain
[3] Cimel Elect, Paris, France
[4] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland
关键词
GLOBAL SOLAR-RADIATION; IRRADIANCE; SERIES; RECONSTRUCTION; REANALYSIS; AFRICA; TRENDS; URBAN; MODEL;
D O I
10.5194/amt-9-53-2016
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izana Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July-August-September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984-2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004-2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations > 85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
[41]   Incorporating large-scale atmospheric variables in long-term seasonal rainfall forecasting using artificial neural networks: an application to the Ping Basin in Thailand [J].
Babel, M. S. ;
Sirisena, T. A. J. G. ;
Singhrattna, N. .
HYDROLOGY RESEARCH, 2017, 48 (03) :867-882
[42]   Time evolution of temperature profiles retrieved from 13 years of infrared atmospheric sounding interferometer (IASI) data using an artificial neural network [J].
Bouillon, Marie ;
Safieddine, Sarah ;
Whitburn, Simon ;
Clarisse, Lieven ;
Aires, Filipe ;
Pellet, Victor ;
Lezeaux, Olivier ;
Scott, Noelle A. ;
Doutriaux-Boucher, Marie ;
Clerbaux, Cathy .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2022, 15 (06) :1779-1793
[43]   Automatic topics extraction from crowdsourced cyclists near-miss and collision reports using text mining and Artificial Neural Networks [J].
Kwayu, Keneth Morgan ;
Kwigizile, Valerian ;
Lee, Kevin ;
Oh, Jun-Seok ;
Nelson, Trisalyn .
INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2022, 11 (04) :767-779
[44]   Tracking Smoke from a Prescribed Fire and Its Impacts on Local Air Quality Using Temporally Resolved GOES-16 ABI Aerosol Optical Depth (AOD) [J].
Huff, Amy K. ;
Kondragunta, Shobha ;
Zhang, Hai ;
Laszlo, Istvan ;
Zhou, Mi ;
Caicedo, Vanessa ;
Delgado, Ruben ;
Levy, Robert .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2021, 38 (05) :963-976
[45]   Temporal and spatial variability in aerosol optical depth (550 nm) over four major cities of India using data from MODIS onboard the Terra and Aqua satellites [J].
Payra S. ;
Gupta P. ;
Bhatla R. ;
El Amraoui L. ;
Verma S. .
Arabian Journal of Geosciences, 2021, 14 (13)
[46]   Evaluation of mineral dust aerosol optical depth and related components from the CHIMERE-DUST model using satellite remote sensing and ground-based observations [J].
Xu, Yiwen .
ATMOSPHERIC ENVIRONMENT, 2018, 191 :395-413
[47]   Optimization of energy production from biogas fuel in a closed landfill using artificial neural networks: A case study of Al Ghabawi Landfill, Jordan [J].
Alrbai, Mohammad ;
Abubaker, Ahmad M. ;
Ahmad, Adnan Darwish ;
Al-Dahidi, Sameer ;
Ayadi, Osama ;
Hjouj, Dirar ;
Al-Ghussain, Loiy .
WASTE MANAGEMENT, 2022, 150 :218-226
[48]   Using seasonal palaeo-flow reconstructions and artificial neural networks for daily water balance modelling: A case study from Tasmania, Australia [J].
Verdon-Kidd, Danielle C. ;
Allen, Kathryn J. ;
Kidd, Luke J. ;
Maxwell, Carolyn ;
Willis, Mark ;
Baker, Patrick .
GLOBAL AND PLANETARY CHANGE, 2025, 246
[49]   Using Artificial Neural Networks to Estimate the Equivalent Resistivity from typical Transmission Line Towers Grounding Arrangement in a Two-Layer Soil [J].
Batista, Raphael ;
Souza, Joao R. .
2019 INTERNATIONAL SYMPOSIUM ON LIGHTNING PROTECTION (XV SIPDA), 2019,
[50]   Towards analysis and predicting maps of ultraviolet index from experimental astronomical parameters (solar elevation, total ozone level, aerosol index, reflectivity). Artificial neural networks global scale approach [J].
Latosinska, Jolanta Natalia ;
Latosinska, Magdalena ;
Bielak, Jaroslaw .
AEROSPACE SCIENCE AND TECHNOLOGY, 2015, 43 :301-313