Aerosol optical depth retrievals at the Izana Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

被引:21
作者
Garcia, R. D. [1 ,2 ]
Garcia, O. E. [1 ]
Cuevas, E. [1 ]
Cachorro, V. E. [2 ]
Barreto, A. [1 ,3 ]
Guirado-Fuentes, C. [1 ,2 ]
Kouremeti, N. [4 ]
Bustos, J. J. [1 ]
Romero-Campos, P. M. [1 ]
de Frutos, A. M. [2 ]
机构
[1] Agencia Estatal Meteorol AEMET, Izana Atmospher Res Ctr IARC, Santa Cruz De Tenerife, Spain
[2] Univ Valladolid, Atmospher Opt Grp, Valladolid, Spain
[3] Cimel Elect, Paris, France
[4] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland
关键词
GLOBAL SOLAR-RADIATION; IRRADIANCE; SERIES; RECONSTRUCTION; REANALYSIS; AFRICA; TRENDS; URBAN; MODEL;
D O I
10.5194/amt-9-53-2016
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izana Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July-August-September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984-2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004-2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations > 85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
[31]   Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks [J].
Zhu, Xudong ;
Zhuang, Qianlai ;
Qin, Zhangcai ;
Glagolev, Mikhail ;
Song, Lulu .
GLOBAL BIOGEOCHEMICAL CYCLES, 2013, 27 (02) :592-604
[32]   Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China [J].
Su, Yi ;
Xie, Yong ;
Tao, Zui ;
Hu, Qiaoli ;
Yu, Tao ;
Gu, Xingfa .
ATMOSPHERIC ENVIRONMENT, 2021, 247
[33]   Long-term (1995-2018) aerosol optical depth derived using ground based AERONET and SKYNET measurements from aerosol aged-background sites [J].
Ningombam, Shantikumar S. ;
Larson, E. J. L. ;
Dumka, U. C. ;
Estelles, Victor ;
Campanelli, M. ;
Steve, Colwell .
ATMOSPHERIC POLLUTION RESEARCH, 2019, 10 (02) :608-620
[34]   Estimation of Global Solar Radiation from Air Temperature using Artificial Neural Networks based on Reservoir Computing [J].
Alomar, Miquel L. ;
Canals, Vincent ;
Rossell, Josep L. ;
Martinez-Moll, Vctor .
PROCEEDINGS OF THE 11TH ISES EUROSUN 2016 CONFERENCE, 2017, :1405-1411
[35]   Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks [J].
Notton, Gilles ;
Paoli, Christophe ;
Vasileva, Siyana ;
Nivet, Marie Laure ;
Canaletti, Jean-Louis ;
Cristofari, Christian .
ENERGY, 2012, 39 (01) :166-179
[36]   Glimpse-based estimation of speech intelligibility from speech-in-noise using artificial neural networks [J].
Tang, Yan .
COMPUTER SPEECH AND LANGUAGE, 2021, 69
[37]   Estimation of Ionospheric Critical Plasma Frequencies From GNSS-TEC Measurements Using Artificial Neural Networks [J].
Otugo, Vivian ;
Okoh, Daniel ;
Okujagu, Charity ;
Onwuneme, Sylvester ;
Rabiu, Babatunde ;
Uwamahoro, Jean ;
Habarulema, John Bosco ;
Tshisaphungo, Mpho ;
Ssessanga, Nicholas .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2019, 17 (08) :1329-1340
[38]   Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument [J].
Xu, J. -W. ;
Martin, R. V. ;
van Donkelaar, A. ;
Kim, J. ;
Choi, M. ;
Zhang, Q. ;
Geng, G. ;
Liu, Y. ;
Ma, Z. ;
Huang, L. ;
Wang, Y. ;
Chen, H. ;
Che, H. ;
Lin, P. ;
Lin, N. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (22) :13133-13144
[39]   Optimization of biomethane production from sweet sorghum bagasse using artificial neural networks combined with particle swarm algorithm [J].
Machineni, Lakshmi ;
Anupoju, Gangagni Rao .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (53) :114095-114110
[40]   Real-Time Prediction of the Dynamic Young's Modulus from the Drilling Parameters Using the Artificial Neural Networks [J].
Elkatatny, Salaheldin .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (09) :10933-10942