Aerosol optical depth retrievals at the Izana Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

被引:21
作者
Garcia, R. D. [1 ,2 ]
Garcia, O. E. [1 ]
Cuevas, E. [1 ]
Cachorro, V. E. [2 ]
Barreto, A. [1 ,3 ]
Guirado-Fuentes, C. [1 ,2 ]
Kouremeti, N. [4 ]
Bustos, J. J. [1 ]
Romero-Campos, P. M. [1 ]
de Frutos, A. M. [2 ]
机构
[1] Agencia Estatal Meteorol AEMET, Izana Atmospher Res Ctr IARC, Santa Cruz De Tenerife, Spain
[2] Univ Valladolid, Atmospher Opt Grp, Valladolid, Spain
[3] Cimel Elect, Paris, France
[4] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland
关键词
GLOBAL SOLAR-RADIATION; IRRADIANCE; SERIES; RECONSTRUCTION; REANALYSIS; AFRICA; TRENDS; URBAN; MODEL;
D O I
10.5194/amt-9-53-2016
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izana Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July-August-September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984-2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004-2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations > 85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [21] Fracture characterization from noisy displacement data using artificial neural networks
    Khaleghi, M.
    Haghighat, E.
    Vahab, M.
    Shahbodagh, B.
    Khalili, N.
    ENGINEERING FRACTURE MECHANICS, 2022, 271
  • [22] Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks
    Samadi, Mehrshad
    Jabbari, Ebrahim
    Azamathulla, H. M.
    Mojallal, Mohammad
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2015, 9 (01) : 291 - 300
  • [23] Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
    Reuter, Maximilian
    Hilker, Michael
    Noel, Stefan
    Di Noia, Antonio
    Weimer, Michael
    Schneising, Oliver
    Buchwitz, Michael
    Bovensmann, Heinrich
    Burrows, John P.
    Boesch, Hartmut
    Lang, Ruediger
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2025, 18 (01) : 241 - 264
  • [24] Machine Learning-Based Improvement of Aerosol Optical Depth from CHIMERE Simulations Using MODIS Satellite Observations
    Lemmouchi, Farouk
    Cuesta, Juan
    Lachatre, Mathieu
    Brajard, Julien
    Coman, Adriana
    Beekmann, Matthias
    Derognat, Claude
    REMOTE SENSING, 2023, 15 (06)
  • [25] A study of aerosol optical depth variations over the Indian region using thirteen years (2001-2013) of MODIS and MISR Level 3 data
    Mehta, Manu
    ATMOSPHERIC ENVIRONMENT, 2015, 109 : 161 - 170
  • [26] Extragalactic test of general relativity from strong gravitational lensing by using artificial neural networks
    Ran, Jing-Yu
    Wei, Jun-Jie
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [27] Predicting body fat percentage from anthropometric and laboratory measurements using artificial neural networks
    Ferenci, Tamas
    Kovacs, Levente
    APPLIED SOFT COMPUTING, 2018, 67 : 834 - 839
  • [28] Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
    Taylor, M.
    Kazadzis, S.
    Tsekeri, A.
    Gkikas, A.
    Amiridis, V.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (09) : 3151 - 3175
  • [29] Sensitivity studies of nighttime top-of-atmosphere radiances from artificial light sources using a 3-D radiative transfer model for nighttime aerosol retrievals
    Zhang, Jianglong
    Reid, Jeffrey S.
    Miller, Steven D.
    Roman, Miguel
    Wang, Zhuosen
    Spurr, Robert J. D.
    Jaker, Shawn
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (10) : 2531 - 2546
  • [30] Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)
    Falamarzi, Yashar
    Palizdan, Narges
    Huang, Yuk Feng
    Lee, Teang Shui
    AGRICULTURAL WATER MANAGEMENT, 2014, 140 : 26 - 36