Aerosol optical depth retrievals at the Izana Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

被引:21
|
作者
Garcia, R. D. [1 ,2 ]
Garcia, O. E. [1 ]
Cuevas, E. [1 ]
Cachorro, V. E. [2 ]
Barreto, A. [1 ,3 ]
Guirado-Fuentes, C. [1 ,2 ]
Kouremeti, N. [4 ]
Bustos, J. J. [1 ]
Romero-Campos, P. M. [1 ]
de Frutos, A. M. [2 ]
机构
[1] Agencia Estatal Meteorol AEMET, Izana Atmospher Res Ctr IARC, Santa Cruz De Tenerife, Spain
[2] Univ Valladolid, Atmospher Opt Grp, Valladolid, Spain
[3] Cimel Elect, Paris, France
[4] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland
关键词
GLOBAL SOLAR-RADIATION; IRRADIANCE; SERIES; RECONSTRUCTION; REANALYSIS; AFRICA; TRENDS; URBAN; MODEL;
D O I
10.5194/amt-9-53-2016
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izana Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July-August-September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984-2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004-2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations > 85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [1] Reconstruction of global solar radiation time series from 1933 to 2013 at the Izana Atmospheric Observatory
    Garcia, R. D.
    Cuevas, E.
    Garcia, O. E.
    Cachorro, V. E.
    Palle, P.
    Bustos, J. J.
    Romero-Campos, P. M.
    de Frutos, A. M.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (09) : 3139 - 3150
  • [2] Atmospheric controls on Puerto Rico precipitation using artificial neural networks
    Ramseyer, Craig A.
    Mote, Thomas L.
    CLIMATE DYNAMICS, 2016, 47 (7-8) : 2515 - 2526
  • [3] Using artificial neural networks to estimate snow water equivalent from snow depth
    Odry, J.
    Boucher, M. A.
    Cantet, P.
    Lachance-Cloutier, S.
    Turcotte, R.
    St-Louis, P. Y.
    CANADIAN WATER RESOURCES JOURNAL, 2020, 45 (03) : 252 - 268
  • [4] Retrievals of aerosol optical depth and total column ozone from Ultraviolet Multifilter Rotating Shadowband Radiometer measurements based on an optimal estimation technique
    Liu, Chaoshun
    Chen, Maosi
    Shi, Runhe
    Gao, Wei
    FRONTIERS OF EARTH SCIENCE, 2014, 8 (04) : 610 - 624
  • [5] Improving aerosol optical depth retrievals from Himawari-8 with ensemble learning enhancement: Validation over Asia
    Fu, Disong
    Gueymard, Christian A.
    Yang, Dazhi
    Zheng, Yu
    Xia, Xiangao
    Bian, Jianchun
    ATMOSPHERIC RESEARCH, 2023, 284
  • [6] Predicting power production from a photovoltaic panel through artificial neural networks using atmospheric indicators
    Kayri, Ismail
    Gencoglu, Muhsin Tunay
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (08): : 3573 - 3586
  • [7] Inverse problems using Artificial Neural Networks in long range atmospheric dispersion
    Sharma, P. K.
    Gera, B.
    Ghosh, A. K.
    KERNTECHNIK, 2011, 76 (02) : 115 - 120
  • [8] Investigation of the parameters influencing progress of concrete carbonation depth by using artificial neural networks
    Akpinar, P.
    Uwanuakwa, I. D.
    MATERIALES DE CONSTRUCCION, 2020, 70 (337)
  • [9] Predicting atmospheric optical properties for radiative transfer computations using neural networks
    Veerman, Menno A.
    Pincus, Robert
    Stoffer, Robin
    van Leeuwen, Caspar M.
    Podareanu, Damian
    van Heerwaarden, Chiel C.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [10] A novel algorithm for full-coverage daily aerosol optical depth retrievals using machine learning-based reconstruction technique
    Yu, Xinyu
    Wong, Man Sing
    Nazeer, Majid
    Li, Zhengqiang
    Kwok, Coco Yin Tung
    ATMOSPHERIC ENVIRONMENT, 2024, 318