LONG-TIME ASYMPTOTIC BEHAVIOR FOR AN EXTENDED MODIFIED KORTEWEG-DE VRIES EQUATION

被引:25
作者
Liu, Nan [1 ]
Guo, Boling [1 ]
Wang, Dengshan [2 ]
Wang, Yupeng [3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing, Peoples R China
[3] Minzu Univ China, Coll Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 中国博士后科学基金;
关键词
extended modified Korteweg-de Vries equation; Riemann-Hilbert problem; nonlinear steepest descent method; long-time asymptotics; NONLINEAR SCHRODINGER-EQUATION; STEEPEST DESCENT METHOD; RIEMANN-HILBERT PROBLEMS; HIROTA EQUATION; WAVES;
D O I
10.4310/CMS.2019.v17.n7.a6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate an integrable extended modified Korteweg-de Vries equation on the line with the initial value belonging to the Schwartz space. By performing the nonlinear steepest descent analysis of an associated matrix Riemann-Hilbert problem, we obtain the explicit leading-order asymptotics of the solution of this initial value problem as time t goes to infinity. For a special case alpha=0, we present the asymptotic formula of the solution to the extended modified Korteweg-de Vries equation in region P = {(x, t) is an element of R-2 vertical bar 0<x <= Mt(1/5), t >= 3} in terms of the solution of a fourth order Painleve II equation.
引用
收藏
页码:1877 / 1913
页数:37
相关论文
共 29 条
[1]   Long-time asymptotics for the derivative nonlinear Schrodinger equation on the half-line [J].
Arruda, Lynnyngs Kelly ;
Lenells, Jonatan .
NONLINEARITY, 2017, 30 (11) :4141-4172
[2]   Long-Time Asymptotics for the Focusing Nonlinear Schrodinger Equation with Nonzero Boundary Conditions at Infinity and Asymptotic Stage of Modulational Instability [J].
Biondini, Gino ;
Mantzavinos, Dionyssios .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (12) :2300-2365
[3]   Long-time asymptotics of the nonlinear Schrodinger equation shock problem [J].
Buckingham, Robert ;
Venakides, Stephanos .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (09) :1349-1414
[4]   Long-time asymptotics for the pure radiation solution of the Sine-Gordon equation [J].
Cheng, PJ ;
Venakides, S ;
Zhou, X .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1195-1262
[5]  
de Monvel AB, 2008, CONTEMP MATH, V458, P99
[6]   The short pulse equation by a Riemann-Hilbert approach [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry ;
Zielinski, Lech .
LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (07) :1345-1373
[7]   A Riemann-Hilbert approach for the Degasperis-Procesi equation [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry .
NONLINEARITY, 2013, 26 (07) :2081-2107
[8]   LONG-TIME ASYMPTOTICS FOR THE CAMASSA-HOLM EQUATION [J].
De Monvel, Anne Boutet ;
Kostenko, Aleksey ;
Shepelsky, Dmitry ;
Teschl, Gerald .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) :1559-1588
[9]   Long-Time Asymptotics for the Focusing NLS Equation with Time-Periodic Boundary Condition on the Half-Line [J].
de Monvel, Anne Boutet ;
Its, Alexander ;
Kotlyarov, Vladimir .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (02) :479-522
[10]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368