Regions of instability for non-twist maps

被引:46
作者
Franks, J [1 ]
Le Calvez, P
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Univ Paris 13, Lab Anal Geometrie & Applicat, UMR 7539, CNRS,Inst Galilee, F-93430 Villetaneuse, France
关键词
D O I
10.1017/S0143385702000858
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an analog of the regions of instability for twist maps in the context of area preserving diffeomorphisms which are not twist maps. Several properties analogous to those of classical regions of instability are proved.
引用
收藏
页码:111 / 141
页数:31
相关论文
共 24 条
[1]  
ARNAUD MC, 1990, THESIS U PARIS 7
[2]  
BIRKHOFF GD, 1966, AM MATH SOC C PUBLIC, V9
[3]  
BIRKHOFF GD, 1950, COLLECT PAPERS, V2, P444
[4]   ROTATION SETS AND MONOTONE PERIODIC-ORBITS FOR ANNULUS HOMEOMORPHISMS [J].
BOYLAND, P .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (02) :203-213
[5]   The limitation of easily connectable regions [J].
Caratheodory, C .
MATHEMATISCHE ANNALEN, 1913, 73 :323-370
[6]   SOME FIXED POINT THEOREMS [J].
CARTWRIGHT, ML ;
LITTLEWOOD, JE .
ANNALS OF MATHEMATICS, 1951, 54 (01) :1-37
[7]  
Dold A., 1980, LECT ALGEBRAIC TOPOL
[8]  
DOUADY R, 1982, THESIS U PARIS 7
[9]   RECURRENCE AND FIXED-POINTS OF SURFACE HOMEOMORPHISMS [J].
FRANKS, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 :99-107
[10]   The Conley index and non-existence of minimal homeomorphisms [J].
Franks, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1999, 43 (03) :457-464