Applications of thin-film lithium niobate in nonlinear integrated photonics

被引:115
作者
Vazimali, Milad Gholipour [1 ]
Fathpour, Sasan [1 ,2 ]
机构
[1] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
[2] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
关键词
lithium niobate; thin-film lithium niobate; nonlinear integrated optics; photonic integrated circuits; SUM-FREQUENCY GENERATION; EFFICIENT 2ND-HARMONIC GENERATION; WAVE-GUIDES; COMB GENERATION; INSULATOR MICRODISK; MU-M; CONVERSION; RESONATORS; LIGHT; MODE;
D O I
10.1117/1.AP.4.3.034001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonics on thin-film lithium niobate (TFLN) has emerged as one of the most pursued disciplines within integrated optics. Ultracompact and low-loss optical waveguides and related devices on this modern material platform have rejuvenated the traditional and commercial applications of lithium niobate for optical modulators based on the electro-optic effect, as well as optical wavelength converters based on second-order nonlinear effects, e.g., second-harmonic, sum-, and difference-frequency generations. TFLN has also created vast opportunities for applications and integrated solutions for optical parametric amplification and oscillation, cascaded nonlinear effects, such as low-harmonic generation; third-order nonlinear effects, such as supercontinuum generation; optical frequency comb generation and stabilization; and nonclassical nonlinear effects, such as spontaneous parametric downconversion for quantum optics. Recent progress in nonlinear integrated photonics on TFLN for all these applications, their current trends, and future opportunities and challenges are reviewed.
引用
收藏
页数:18
相关论文
共 173 条
[31]   Photonic-chip-based frequency combs [J].
Gaeta, Alexander L. ;
Lipson, Michal ;
Kippenberg, Tobias J. .
NATURE PHOTONICS, 2019, 13 (03) :158-169
[32]   Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108 [J].
Gao, Renhong ;
Zhang, Haisu ;
Bo, Fang ;
Fang, Wei ;
Hao, Zhenzhong ;
Yao, Ni ;
Lin, Jintian ;
Guan, Jianglin ;
Deng, Li ;
Wang, Min ;
Qiao, Lingling ;
Cheng, Ya .
NEW JOURNAL OF PHYSICS, 2021, 23 (12)
[33]   On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator [J].
Gao, Renhong ;
Guan, Jianglin ;
Yao, Ni ;
Li Deng ;
Lin, Jintian ;
Wang, Min ;
Qiao, Lingling ;
Wang, Zhenhua ;
Liang, Youting ;
Zhou, Yuan ;
Cheng, Ya .
OPTICS LETTERS, 2021, 46 (13) :3131-3134
[34]  
Gong Z, ARXIV220202920 2022
[35]   Near-octave lithium niobate soliton microcomb [J].
Gong, Zheng ;
Liu, Xianwen ;
Xu, Yuntao ;
Tang, Hong X. .
OPTICA, 2020, 7 (10) :1275-1278
[36]   Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators [J].
Gong, Zheng ;
Liu, Xianwen ;
Xu, Yuntao ;
Xu, Mingrui ;
Surya, Joshua B. ;
Lu, Juanjuan ;
Bruch, Alexander ;
Zou, Changling ;
Tang, Hong X. .
OPTICS LETTERS, 2019, 44 (12) :3182-3185
[37]   Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third- and second-order optical nonlinearities [J].
Gonzalez, Guillermo Fernando Camacho ;
Malinowski, Marcin ;
Honardoost, Amirmahdi ;
Fathpour, Sasan .
APPLIED OPTICS, 2019, 58 (13) :D1-D6
[38]   Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals [J].
Hansen, Anders K. ;
Andersen, Peter E. ;
Jensen, Ole B. ;
Sumpf, Bernd ;
Erbert, Gotz ;
Petersen, Paul M. .
OPTICS LETTERS, 2015, 40 (23) :5526-5529
[39]   Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators [J].
Hao, Zhenzhong ;
Zhang, Li ;
Mao, Wenbo ;
Gao, Ang ;
Gao, Xiaomei ;
Gao, Feng ;
Bo, Fang ;
Zhang, Guoquan ;
Xu, Jingjun .
PHOTONICS RESEARCH, 2020, 8 (03) :311-317
[40]   Sum-frequency generation in on-chip lithium niobate microdisk resonators [J].
Hao, Zhenzhong ;
Wang, Jie ;
Ma, Shuqiong ;
Mao, Wenbo ;
Bo, Fang ;
Gao, Feng ;
Zhang, Guoquan ;
Xu, Jingjun .
PHOTONICS RESEARCH, 2017, 5 (06) :623-628