A semi-automated "blanket" method for renal segmentation from non-contrast T1-weighted MR images

被引:6
|
作者
Rusinek, Henry [1 ,2 ]
Lim, Jeremy C. [3 ]
Wake, Nicole [1 ,2 ]
Seah, Jas-mine [4 ]
Botterill, Elissa [3 ]
Farquharson, Shawna [5 ]
Mikheev, Artem [1 ,2 ]
Lim, Ruth P. [3 ,6 ]
机构
[1] NYU, Sch Med, Ctr Adv Imaging Innovat & Res CAI2R, 660 1st Ave,Rm413, New York, NY 10016 USA
[2] NYU, Sch Med, Dept Radiol, 660 1st Ave,Rm413, New York, NY 10016 USA
[3] Austin Hlth, Radiol, Melbourne, Vic, Australia
[4] Austin Hlth, Endocrinol, Melbourne, Vic, Australia
[5] Florey Neurosci Inst, Melbourne, Vic, Australia
[6] Univ Melbourne, Melbourne, Vic, Australia
关键词
Segmentation; Kidney; Renal; MRI; Volume; AUTOMATED SEGMENTATION; KIDNEY VOLUMES;
D O I
10.1007/s10334-015-0504-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
To investigate the precision and accuracy of a new semi-automated method for kidney segmentation from single-breath-hold non-contrast MRI. The user draws approximate kidney contours on every tenth slice, focusing on separating adjacent organs from the kidney. The program then performs a sequence of fully automatic steps: contour filling, interpolation, non-uniformity correction, sampling of representative parenchyma signal, and 3D binary morphology. Three independent observers applied the method to images of 40 kidneys ranging in volume from 94.6 to 254.5 cm(3). Manually constructed reference masks were used to assess accuracy. The volume errors for the three readers were: 4.4 % +/- A 3.0 %, 2.9 % +/- A 2.3 %, and 3.1 % +/- A 2.7 %. The relative discrepancy across readers was 2.5 % +/- A 2.1 %. The interactive processing time on average was 1.5 min per kidney. Pending further validation, the semi-automated method could be applied for monitoring of renal status using non-contrast MRI.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 50 条
  • [21] Improved contrast for myeloma focal lesions with T2-weighted Dixon images compared to T1-weighted images
    Danner, A.
    Brumpt, E.
    Alilet, M.
    Tio, G.
    Omoumi, P.
    Aubry, S.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (09) : 513 - 519
  • [22] Evaluation of acute renal colic: a comparison of non-contrast CT versus 3-T non-contrast HASTE MR urography
    Semins, M. J.
    Feng, Z.
    Trock, B.
    Bohlman, M.
    Hosek, W.
    Matlaga, B. R.
    UROLITHIASIS, 2013, 41 (01) : 43 - 46
  • [23] Delineation and diagnosis of brain tumors from post contrast T1-weighted MR images using rough granular computing and random forest
    Koley, Subhranil
    Sadhu, Anup K.
    Mitra, Pabitra
    Chakraborty, Basabi
    Chakraborty, Chandan
    APPLIED SOFT COMPUTING, 2016, 41 : 453 - 465
  • [24] Semi-automated myocardial segmentation in native T1-mapping CMR using deformable non-rigid registration of CINE images
    Farrag, Nadia A.
    White, James A.
    Ukwatta, Eranga
    MEDICAL IMAGING 2019: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2019, 10953
  • [25] Automated segmentation of mammary gland regions in non-contrast torso CT images based on probabilistic atlas
    Zhou, X.
    Kan, M.
    Hara, T.
    Fujita, H.
    Sugisaki, K.
    Yokoyama, R.
    Lee, G.
    Hoshi, H.
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [26] Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images
    Shan, ZY
    Yue, GH
    Liu, JZ
    NEUROIMAGE, 2002, 17 (03) : 1587 - 1598
  • [27] Semi-automated generation of individual computational models of the human head and torso from MR images
    Kalloch, Benjamin
    Bode, Jens
    Kozlov, Mikhail
    Pampel, Andre
    Hlawitschka, Mario
    Sehm, Bernhard
    Villringer, Arno
    Moeller, Harald E.
    Bazin, Pierre-Louis
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (03) : 2090 - 2105
  • [28] A comparison of automated lesion segmentation approaches for chronic stroke T1-weighted MRI data
    Ito, Kaori L.
    Kim, Hosung
    Liew, Sook-Lei
    HUMAN BRAIN MAPPING, 2019, 40 (16) : 4669 - 4685
  • [29] Intracranial lesions with high signal intensity on T1-weighted MR images - review of pathologies
    Zimny, Anna
    Zinska, Lidia
    Bladowska, Joanna
    Neska-Matuszewska, Malgorzata
    Sasiadek, Marek
    POLISH JOURNAL OF RADIOLOGY, 2013, 78 (04) : 36 - 46
  • [30] 3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network
    Boutinaud, Philippe
    Tsuchida, Ami
    Laurent, Alexandre
    Adonias, Filipa
    Hanifehlou, Zahra
    Nozais, Victor
    Verrecchia, Violaine
    Lampe, Leonie
    Zhang, Junyi
    Zhu, Yi-Cheng
    Tzourio, Christophe
    Mazoyer, Bernard
    Joliot, Marc
    FRONTIERS IN NEUROINFORMATICS, 2021, 15