Flexible toggles and symmetric invertible asynchronous elementary cellular automata

被引:0
作者
Defant, Colin [1 ,2 ]
机构
[1] Princeton Univ, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA
[2] Univ Florida, 1400 Stadium Rd, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Sequential dynamical system; Parity function; Asynchronous cellular automaton; Generalized toggle group; Flexible toggle group; Orbit structure; SEQUENTIAL DYNAMICAL-SYSTEMS; SIMULATION; EQUIVALENCE;
D O I
10.1016/j.disc.2018.05.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequential dynamical system (SDS) consists of a graph with vertices v(1),...,v(n), a state set A, a collection of vertex functions {f(vi)}(i=1)(n), and a permutation pi is an element of S-n that specifies how to compose these functions to yield the SDS map [G, {f(vi)}(i=1)(n), pi] : A(n)-> A(n). In this paper, we study symmetric invertible SDS defined over the cycle graph C-n using the set of states F-2. These are, in other words, asynchronous elementary cellular automata (ECA) defined using ECA rules 150 and 105. Each of these SDS defines a group action on the set F-2(n) of n-bit binary vectors. Because the SDS maps are products of involutions, this relates to generalized toggle groups, which Striker recently introduced. In this paper, we further generalize the notion of a generalized toggle group to that of a flexible toggle group; the SDS maps we consider are examples of Coxeter elements of flexible toggle groups. Our main result is the complete classification of the dynamics of symmetric invertible SDS defined over cycle graphs using the set of states F-2 and the identity update order pi = 123...n. More precisely, if T denotes the SDS map of such an SDS, then we obtain an explicit formula for vertical bar Per(r)(T)vertical bar, the number of periodic points of T of period r, for every positive integer r. It turns out that if we fix r and vary n and T, then vertical bar Per(r)(T)vertical bar only takes at most three nonzero values. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2367 / 2379
页数:13
相关论文
共 28 条
  • [1] [Anonymous], 2014, Discrete Math. Theor. Comput. Sci. Proc. AT
  • [2] Reachability problems for sequential dynamical systems with threshold functions
    Barrett, C
    Hunt, HB
    Marathe, MV
    Ravi, SS
    Rosenkrantz, DJ
    Steams, RE
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 295 (1-3) : 41 - 64
  • [3] Barrett C., 2001, DISCRETE MODELS, P95
  • [4] Barrett C., 2003, ANN COMB, V7, P381
  • [5] Elements of a theory of simulation - II: sequential dynamical systems
    Barrett, CL
    Mortveit, HS
    Reidys, CM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 107 (2-3) : 121 - 136
  • [6] Elements of a theory of simulation III: equivalence of SDS
    Barrett, CL
    Mortveit, HS
    Reidys, CM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2001, 122 (03) : 325 - 340
  • [7] Elements of a theory of computer simulation - I: Sequential CA over random graphs
    Barrett, CL
    Reidys, CM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (2-3) : 241 - 259
  • [8] ORBITS OF ANTICHAINS REVISITED
    CAMERON, PJ
    FONDERFLAASS, DG
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1995, 16 (06) : 545 - 554
  • [9] THE EXPECTED JAGGEDNESS OF ORDER IDEALS
    Chan, Melody
    Haddadan, Shahrzad
    Hopkins, Sam
    Moci, Luca
    [J]. FORUM OF MATHEMATICS SIGMA, 2017, 5
  • [10] Linear sequential dynamical systems, incidence algebras, and Mobius functions
    Chen, Ricky X. F.
    Reidys, Christian M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 553 : 270 - 291