Synchronization of hyperchaotic systems via linear control

被引:10
作者
Wang, Hua [1 ]
Han, Zheng-zhi [2 ]
Mo, Zhen [2 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperchaotic systems; Synchronization; Linear feedback; Input-to-state stability (ISS); UNIFIED CHAOTIC SYSTEMS; SLIDING MODE CONTROL; UNCERTAIN PARAMETERS; FEEDBACK-CONTROL; CHEN SYSTEM; STABILIZATION; ATTRACTOR; STABILITY;
D O I
10.1016/j.cnsns.2009.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, synchronization of hyperchaotic system is discussed. Based on the stability theory in the cascade system, a simple linear feedback law is presented to realize synchronization of hyperchaotic systems. Simulation results are given to illustrate the effectiveness of the proposed method. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1910 / 1920
页数:11
相关论文
共 27 条
[1]   A unifying integral ISS framework for stability of nonlinear cascades [J].
Arcak, M ;
Angeli, D ;
Sontag, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) :1888-1904
[2]   New 3D-scroll attractors in hyperchaotic Chua's circuits forming a ring [J].
Cafagna, D ;
Grassi, G .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10) :2889-2903
[3]   Adaptive synchronization of neural networks with or without time-varying delay [J].
Cao, JD ;
Lu, JQ .
CHAOS, 2006, 16 (01)
[4]   Delay-dependent robust stabilization of uncertain systems with multiple state delays [J].
Cao, YY ;
Sun, YX ;
Cheng, CW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (11) :1608-1612
[5]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110
[6]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[7]   Constructive Lyapunov stabilization of nonlinear cascade systems [J].
Jankovic, M ;
Sepulchre, R ;
Kokotovic, PV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (12) :1723-1735
[8]  
Khalil H., 2002, Control of Nonlinear Systems
[9]   Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters [J].
Lu, JQ ;
Cao, JD .
CHAOS, 2005, 15 (04)
[10]   HYPERCHAOS - LABORATORY EXPERIMENT AND NUMERICAL CONFIRMATION [J].
MATSUMOTO, T ;
CHUA, LO ;
KOBAYASHI, K .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1143-1147