VAET: A Visual Analytics Approach for E-transactions Time-Series

被引:44
作者
Xie, Cong [1 ]
Chen, Wei [1 ,2 ]
Huang, Xinxin [1 ]
Hu, Yueqi [3 ]
Barlowe, Scott [4 ]
Yang, Jing [3 ]
机构
[1] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Cyber Innovat Joint Res Ctr, Hangzhou, Zhejiang, Peoples R China
[3] Univ N Carolina, Dept Comp Sci, Charlotte, NC 28223 USA
[4] Western Carolina Univ, Cullowhee, NC USA
基金
中国国家自然科学基金; 国家自然科学基金重大项目; 国家教育部博士点专项基金资助; 国家高技术研究发展计划(863计划);
关键词
Time-Series; Visual Analytics; E-transaction; VISUALIZATION;
D O I
10.1109/TVCG.2014.2346913
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Previous studies on E-transaction time-series have mainly focused on finding temporal trends of transaction behavior. Interesting transactions that are time-stamped and situation-relevant may easily be obscured in a large amount of information. This paper proposes a visual analytics system, Visual Analysis of E-transaction Time-Series (VAET), that allows the analysts to interactively explore large transaction datasets for insights about time-varying transactions. With a set of analyst-determined training samples, VAET automatically estimates the saliency of each transaction in a large time-series using a probabilistic decision tree learner. It provides an effective time-of-saliency (TOS) map where the analysts can explore a large number of transactions at different time granularities. Interesting transactions are further encoded with KnotLines, a compact visual representation that captures both the temporal variations and the contextual connection of transactions. The analysts can thus explore, select, and investigate knotlines of interest. A case study and user study with a real E-transactions dataset (26 million records) demonstrate the effectiveness of VAET.
引用
收藏
页码:1743 / 1752
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 2011, HUM COMPUT INT SPRIN, DOI DOI 10.1007/978-0-85729-079-3_1
[2]  
[Anonymous], 2012, Mining of massive datasets
[3]  
Cadez I. V., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P37, DOI 10.1145/502512.502523
[4]   WireVis: Visualization of categorical, time-varying data from financial transactions [J].
Chang, Remco ;
Ghoniem, Mohammad ;
Kosara, Robert ;
Ribarsky, William ;
Yang, Jing ;
Suma, Evan ;
Ziemkiewicz, Caroline ;
Kern, Daniel ;
Sudjianto, Agus .
VAST: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2007, PROCEEDINGS, 2007, :155-+
[5]  
Guo DS, 2006, IEEE T VIS COMPUT GR, V12, P1461, DOI 10.1109/TVCG.2006.84
[6]  
Hall M., 2009, SIGKDD Explorations, V11, P10, DOI DOI 10.1145/1656274.1656278
[7]   Density displays for data stream monitoring [J].
Hao, Ming ;
Keim, Daniel A. ;
Dayal, Umeshwar ;
Oelke, Daniela ;
Tremblay, Chantal .
COMPUTER GRAPHICS FORUM, 2008, 27 (03) :895-902
[8]  
Hao Ming C, 2001, VISUALIZATION DIRECT
[9]  
Hochheiser H., 2004, Information Visualization, V3, P1, DOI 10.1057/palgrave.ivs.9500061
[10]   Graphical Perception of Multiple Time Series [J].
Javed, Wages ;
McDonnel, Bryan ;
Elmqvist, Niklas .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) :927-934