Computation of sharp estimates of the Poincare constant on planar domains with piecewise self-similar boundary

被引:0
作者
Banjai, Lehel [1 ]
Boulton, Lyonell [1 ,2 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
关键词
Bounds for eigenvalues; conformal mapping; domains with fractal boundary; second order spectra; RELATIVE SPECTRA; KOCH SNOWFLAKE; 2-SIDED BOUNDS; EIGENVALUES; EIGENFUNCTIONS; APPROXIMATION; POLYGONS;
D O I
10.4171/JFG/101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a strategy for finding sharp upper and lower numerical bounds of the Poincare constant on a class of planar domains with piecewise self-similar boundary. The approach consists of four main components: W1) tight inner-outer shape interpolation, W2) conformal mapping of the approximate polygonal regions, W3) grad-div system formulation of the spectral problem and W4) computation of the eigenvalue bounds. After describing the method, justifying its validity and determining general convergence estimates, we show concrete evidence of its effectiveness by computing lower and upper bound estimates for the constant on the Koch snowflake.
引用
收藏
页码:153 / 188
页数:36
相关论文
共 33 条
[1]  
[Anonymous], 1997, PROGR INVERSE SPECTR
[2]  
[Anonymous], 1982, FRACTAL GEOMETRY NAT
[3]  
Apostol T.M., 2010, NIST HDB MATH FUNCTI
[4]   Revisiting the crowding phenomenon in Schwarz-Christoffel mapping [J].
Banjai, L. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) :618-636
[5]   A multipole method for Schwarz-Christoffel mapping of polygons with thousands of sides [J].
Banjai, L ;
Trefethen, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03) :1042-1065
[6]   Eigenfrequencies of fractal drums [J].
Banjai, Lehel .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (01) :1-18
[7]   Local two-sided bounds for eigenvalues of self-adjoint operators [J].
Barrenechea, G. R. ;
Boulton, L. ;
Boussaid, N. .
NUMERISCHE MATHEMATIK, 2017, 135 (04) :953-986
[8]   FINITE ELEMENT EIGENVALUE ENCLOSURES FOR THE MAXWELL OPERATOR [J].
Barrenechea, G. R. ;
Boulton, L. ;
Boussaid, N. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06) :A2887-A2906
[9]   On approximation of the eigenvalues of perturbed periodic Schrodinger operators [J].
Boulton, Lyonell ;
Levitin, Michael .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) :9319-9329
[10]   On the convergence of the quadratic method [J].
Boulton, Lyonell ;
Hobiny, Aatef .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (03) :1310-1333