Comparison of CPU and GPU bayesian estimates of fibre orientations from diffusion MRI

被引:3
作者
Kim, Danny H. C. [1 ]
Williams, Lynne J. [1 ,2 ]
Hernandez-Fernandez, Moises [3 ]
Bjornson, Bruce H. [1 ,2 ,4 ]
机构
[1] BC Childrens Hosp, Brain Mapping Neuroinformat & Neurotechnol Lab, Vancouver, BC, Canada
[2] BC Childrens Hosp, MRI Res Facil, Vancouver, BC, Canada
[3] Univ Oxford, Wellcome Ctr Integrat Neuroimaging WIN, Ctr Funct Magnet Resonance Imaging Brain FMRIB, Oxford, England
[4] Univ British Columbia, Fac Med, Dept Pediat, Div Neurol, Vancouver, BC, Canada
关键词
RANDOM NUMBER GENERATORS; TRACTOGRAPHY; ACCELERATION; OPTIMIZATION; REGISTRATION; ROBUST;
D O I
10.1371/journal.pone.0252736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe correct estimation of fibre orientations is a crucial step for reconstructing human brain tracts. Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques (bedpostx) is able to estimate several fibre orientations and their diffusion parameters per voxel using Markov Chain Monte Carlo (MCMC) in a whole brain diffusion MRI data, and it is capable of running on GPUs, achieving speed-up of over 100 times compared to CPUs. However, few studies have looked at whether the results from the CPU and GPU algorithms differ. In this study, we compared CPU and GPU bedpostx outputs by running multiple trials of both algorithms on the same whole brain diffusion data and compared each distribution of output using Kolmogorov-Smirnov tests. ResultsWe show that distributions of fibre fraction parameters and principal diffusion direction angles from bedpostx and bedpostx_gpu display few statistically significant differences in shape and are localized sparsely throughout the whole brain. Average output differences are small in magnitude compared to underlying uncertainty. ConclusionsDespite small amount of differences in output between CPU and GPU bedpostx algorithms, results are comparable given the difference in operation order and library usage between CPU and GPU bedpostx.
引用
收藏
页数:21
相关论文
共 31 条
[1]   The basis of anisotropic water diffusion in the nervous system - a technical review [J].
Beaulieu, C .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :435-455
[2]   Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J].
Behrens, T. E. J. ;
Berg, H. Johansen ;
Jbabdi, S. ;
Rushworth, M. F. S. ;
Woolrich, M. W. .
NEUROIMAGE, 2007, 34 (01) :144-155
[3]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[4]   GPU acceleration of nonlinear diffusion tensor estimation using CUDA and MPI [J].
Chang, Lin-Ching ;
El-Araby, Esam ;
Dang, Vinh Q. ;
Dao, Lam H. .
NEUROCOMPUTING, 2014, 135 :328-338
[5]   Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision [J].
Colberg, Peter H. ;
Hoefling, Felix .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (05) :1120-1129
[6]   Medical image processing on the GPU - Past, present and future [J].
Eklund, Anders ;
Dufort, Paul ;
Forsberg, Daniel ;
LaConte, Stephen M. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (08) :1073-1094
[7]   Harnessing graphics processing units for improved neuroimaging statistics [J].
Eklund, Anders ;
Villani, Mattias ;
LaConte, Stephen M. .
COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE, 2013, 13 (03) :587-597
[8]   Dipy, a library for the analysis of diffusion MRI data [J].
Garyfallidis, Eleftherios ;
Brett, Matthew ;
Amirbekian, Bagrat ;
Rokem, Ariel ;
van der Walt, Stefan ;
Descoteaux, Maxime ;
Nimmo-Smith, Ian .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[9]   RF Coils: A Practical Guide for Nonphysicists [J].
Gruber, Bernhard ;
Froeling, Martijn ;
Leiner, Tim ;
Klomp, Dennis W. J. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :590-604
[10]   Good random number generators are (not so) easy to find [J].
Hellekalek, P .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 46 (5-6) :485-505