Centered sub-Laplacians and densities in Lie groups of polynomial volume growth

被引:8
作者
Alexopoulos, G [1 ]
机构
[1] Univ Paris Sud, F-91405 Orsay, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 05期
关键词
D O I
10.1016/S0764-4442(98)85003-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Harnack inequality on connected Lie groups of polynomial volume growth. We use this inequality to study the large time behavior of the heat kernels associated to centered sub-laplacians. Thus, we obtain Gaussian estimates and estimates of the type Berry-Esseen. We also obtain similar results of the convolution powers of centered densities. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:539 / 542
页数:4
相关论文
共 12 条
[11]  
VAROPOULOS NT, 1987, CR ACAD SCI I-MATH, V304, P519
[12]  
VAROPOULOS NT, 1993, CAMBRIDGE TRACTS MAT