Centered sub-Laplacians and densities in Lie groups of polynomial volume growth

被引:8
作者
Alexopoulos, G [1 ]
机构
[1] Univ Paris Sud, F-91405 Orsay, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 05期
关键词
D O I
10.1016/S0764-4442(98)85003-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Harnack inequality on connected Lie groups of polynomial volume growth. We use this inequality to study the large time behavior of the heat kernels associated to centered sub-laplacians. Thus, we obtain Gaussian estimates and estimates of the type Berry-Esseen. We also obtain similar results of the convolution powers of centered densities. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:539 / 542
页数:4
相关论文
共 12 条
[1]  
ALEXOPOULOS G, IN PRESS LARGE TIME
[2]  
ALEXOPOULOS G, 1992, CAN J MATH, V44, P1
[3]  
[Anonymous], 1994, HOMOGENIZATION DIFFE
[4]   COMPACTNESS METHODS IN THE THEORY OF HOMOGENIZATION [J].
AVELLANEDA, M ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (06) :803-847
[5]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[6]  
CREPEL P, 1978, ANN I H POINCARE B, V14, P145
[7]  
GUIVARCH Y, 1973, B SCI MATH FRANCE, V101, P149
[8]   GAUSSIAN ESTIMATES FOR MARKOV-CHAINS AND RANDOM-WALKS ON GROUPS [J].
HEBISCH, W ;
SALOFFCOSTE, L .
ANNALS OF PROBABILITY, 1993, 21 (02) :673-709
[9]  
LEPAGE E, 1997, ANN I H POINCARE PRO, V32, P223
[10]  
MOUSTAPHA S, IN PRESS