Best Possible Inequalities between Generalized Logarithmic Mean and Classical Means

被引:25
作者
Chu, Yu-Ming [1 ]
Long, Bo-Yong [2 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Anhui Univ, Coll Math Sci, Hefei 230039, Peoples R China
关键词
MONOTONICITY; RATIO;
D O I
10.1155/2010/303286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We answer the question: for alpha, beta,gamma is an element of (0, 1) with alpha + beta + gamma = 1, what are the greatest value p and the least value q, such that the double inequality L-p(a, b) < A(alpha)(a, b)G(beta)(a, b)H-gamma(a, b) < L-q(a, b) holds for all a, b > 0 with a not equal b? Here L-p(a, b), A(a, b), G(a, b), and H(a, b) denote the generalized logarithmic, arithmetic, geometric, and harmonic means of two positive numbers a and b, respectively.
引用
收藏
页数:13
相关论文
共 22 条
[1]   INEQUALITIES FOR AVERAGE VALUES [J].
ALZER, H .
ARCHIV DER MATHEMATIK, 1986, 47 (05) :422-426
[2]   Inequalities for means in two variables [J].
Alzer, H ;
Qiu, SL .
ARCHIV DER MATHEMATIK, 2003, 80 (02) :201-215
[3]  
[Anonymous], 2006, J RAJASTHAN ACAD PHY
[4]  
[Anonymous], 1987, Crux Math
[5]  
Bullen P.S., 1988, MEANS THEIR INEQUALI, V31
[6]   LOGARITHMIC MEAN [J].
CARLSON, BC .
AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (06) :615-&
[7]  
Chen C.K., 2004, Association for Institutional Research, V1, P1
[8]   The monotonicity of the ratio between generalized logarithmic means [J].
Chen, Chao-Ping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :86-89
[9]  
Janous W, 2001, MATH INEQUAL APPL, V4, P369
[10]   Functional equations involving the logarithmic mean [J].
Kahlig, P ;
Matkowski, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (07) :385-390